
www.manaraa.com

Settling the Complexity of Computing

Two-Player Nash Equilibria∗

Xi Chen† Xiaotie Deng‡ Shang-Hua Teng§

Abstract

We prove that Bimatrix, the problem of finding a Nash equilibrium in a two-player game,

is complete for the complexity class PPAD (Polynomial Parity Argument, Directed version)

introduced by Papadimitriou in 1991.

Our result, building upon the work of Daskalakis, Goldberg, and Papadimitriou on the

complexity of four-player Nash equilibria [21], settles a long standing open problem in algo-

rithmic game theory. It also serves as a starting point for a series of results concerning the

complexity of two-player Nash equilibria. In particular, we prove the following theorems:

• Bimatrix does not have a fully polynomial-time approximation scheme unless every

problem in PPAD is solvable in polynomial time.

• The smoothed complexity of the classic Lemke-Howson algorithm and, in fact, of any

algorithm for Bimatrix is not polynomial unless every problem in PPAD is solvable in

randomized polynomial time.

Our results also have a complexity implication in mathematical economics:

• Arrow-Debreu market equilibria are PPAD-hard to compute.

∗This paper combines the papers “Settling the Complexity of 2-Player Nash-Equilibrium,” by Xi Chen and
Xiaotie Deng, and “Computing Nash Equilibria: Approximation and Smoothed Complexity,” by the three of us.
The extended abstracts of both papers appeared in the Proceedings of the 47th Annual Symposium on Foundations
of Computer Science, IEEE. The result that Bimatrix is PPAD-complete is from the first paper. We also include
the main result from the paper “Sparse Games are Hard,” by the three of us, presented at the 2nd International
Workshop on Internet and Network Economics.

†Department of Computer Science, Tsinghua University, Beijing, P.R.China. email: csxichen@gmail.com
‡Department of Computer Science, City University of Hong Kong, Hong Kong SAR, P.R. China. email:

deng@cs.cityu.edu.hk
§Department of Computer Science, Boston University, Boston and Akamai Technologies Inc., Cambridge, MA,

USA. email: steng@cs.bu.edu

1

www.manaraa.com

1 Introduction

In 1944, Morgenstern and von Neumann [53] initiated the study of game theory and its applica-

tions to economic behavior. At the center of their study was von Neumann’s minimax equilibrium

solution for two-player zero-sum games [67]. In a two-player zero-sum game, one player’s gain is

equal to the loss of the other. They observed that any general n-player (non-zero-sum) game can

be reduced to an (n + 1)-player zero-sum game. Their work went on to introduce the notion of

cooperative games and proposed the concept of stable sets as the rational outcomes for games of

multiple players.

In 1950, following the original spirit of Morgenstern and von Neumann’s work on two-player

zero-sum games, Nash [55, 54] formulated an equilibrium concept for non-cooperative games

among multiple players. This concept is now commonly referred to as the Nash equilibrium. It

uses the fixed point for individual optimal strategies introduced in [67] to capture the notion of

individual rationality: Each player’s strategy is a best response to the other players’ strategies.

Nash proved that every n-player game has an equilibrium point [55, 48]. His original proof was

based on Brouwer’s Fixed Point Theorem [9]. David Gale suggested the use of Kakutani’s Fixed

Point Theorem [38] to simplify the proof. While von Neumann’s Minimax Theorem for two-player

zero-sum games can be proved by linear programming duality, the fixed point approach to Nash’s

Equilibrium Theorem seems to be necessary; even for the two-player case, linear programming

duality alone does not seem to be sufficient to derive Nash’s theorem.

The concept of Nash equilibrium has had a tremendous influence on economics, as well as

on other social and natural science disciplines [35]. Nash’s approach to non-cooperative games

has played an essential role in shaping mathematical economics, which considers agents with

competing individual interests; Nash’s fixed-point based proof technique also enabled Arrow and

Debreu [4] to establish a general existence theorem for market equilibria.

However, the existence proofs based on fixed point theorems do not usually lead to efficient

algorithms for finding equilibria. In fact, in spite of many remarkable breakthroughs in algorithmic

game theory and mathematical programming, answers to several fundamental questions about

the computation of Nash and Arrow-Debreu equilibria remain elusive. The most notable open

problem is that of deciding whether there is a polynomial-time algorithm for finding an equilibrium

point in a two-player game.

In this paper, building on a recent work of Daskalakis, Goldberg, and Papadimitriou [21] on

the complexity of four-player Nash equilibria, we settle the complexity of computing a two-player

Nash equilibrium, and extend this result to the approximation and smoothed complexity of this

game-theoretic problem. In the rest of this section, we review previous results on the computation

of Nash equilibria, state our main results, and discuss their extension to the computation of market

equilibria.

1.1 Finite-Step Equilibrium Algorithms

Since Nash and Arrow-Debreu’s pioneering work, great progress has been made on finding con-

structive and algorithmic proofs for equilibrium theorems. The advances in equilibrium compu-

2

www.manaraa.com

tation can be chronologically classified into the following two periods:

• Computability Period: In this period, the main objective was to design equilibrium

algorithms that terminate in a finite number of steps and to determine which equilibrium

problems do not allow finite step algorithms.

• Complexity Period: In this period, the main objective has been to develop polynomial-

time algorithms for computing equilibria and to characterize the complexity of equilibrium

computation.

We will discuss the first period in this subsection and the second period in the next three sub-

sections.

Von Neumann’s duality-based proof of the minimax theorem leads to a linear programming

formulation of the problem of finding an equilibrium in a two-player zero-sum game. One can

apply the simplex algorithm to compute, in a finite number of steps1, an equilibrium in a two-

player zero-sum game with rational payoffs. More than a decade after Nash’s seminal work,

Lemke and Howson [47] developed a path-following, simplex-like algorithm for finding a Nash

equilibrium in general two-player games. Their algorithm terminates in a finite number of steps

for all two-player games with rational payoffs.

The Lemke-Howson algorithm has been extended to games with more than two players [68].

However, due to Nash’s observation that there are rational three-player games all of whose equi-

libria are irrational, finite-step algorithms become harder to obtain for games with three or more

players. Similarly, some exchange economies do not have any rational Arrow-Debreu equilibrium.

The absence of a rational equilibrium underscores the continuous nature of equilibrium computa-

tion. Brouwer’s Fixed Point Theorem — any continuous function f from a convex compact set,

such as a simplex or a hypercube, to itself has a fixed point — is inherently continuous.

Due to this continuity and irrationality, one has to be careful when defining search problems

for finding equilibria and fixed points in the classical Turing model. There are two known ways

to ensure the existence of a solution with a finite description: either we look for the symbolic

representation of an equilibrium or fixed point (e.g., representing an equilibrium with a number

of irreducible integer polynomials whose roots are entries of the equilibrium [49]), or we introduce

imprecision and look for approximate equilibria or approximate fixed points [61, 62, 56, 34, 26].

In this paper, we only focus on the latter direction. For example, one standard definition of an

approximate fixed point of a continuous function f is a point x such that ‖f(x) − x‖ ≤ ε for a

given ε > 0 [61].

In 1928, Sperner [63] discovered a discrete fixed point theorem that led to one of the most

elegant proofs of Brouwer’s Fixed Point Theorem. Suppose that Ω is a d-dimensional simplex with

vertices v1,v2, ...,vd+1, and that S is a simplicial decomposition of Ω. Recall that a simplicial

decomposition S of Ω is a finite collection of d-dimensional simplices, whose union is Ω, and for

all simplices S1 and S2 in S, S1 ∩ S2 is either empty or a face of both S1 and S2 [27]. We

1The simplex algorithm terminates in a finite number of steps in the Turing model as well as in various com-
putational models involving real numbers, such as the model defined by Ko [44] and the model defined by Blum,
Shub, and Smale [6].

3

www.manaraa.com

use V (S) to denote the union of the vertices of the simplices in S. Suppose Π assigns to each

vertex in V (S) a color from {1, 2, ..., d + 1} such that, for every vertex v in V (S), Π(v) &= i

if the ith component of the barycentric coordinates2 of v, with respect to v1,v2, ...,vd+1, is 0.

Then, Sperner’s Lemma asserts that there exists a simplex in S that contains all colors. This

fully-colored simplex is often referred to as a panchromatic simplex or a Sperner simplex of (S,Π).

Consider a Brouwer function f with Lipschitz constant L over the simplex Ω. Suppose further

that the diameter of each simplex in S is at most ε/L. Then, one can define a color assignment

Πf as follows: For each v ∈ V (S), we view f(v) − v as a vector from v to f(v); Extend this

vector until it reaches a face of Ω; Suppose the face is spanned by {v1, ...,vd+1}− {vi} for some

i, then we set Πf (v) = i. One can show that each panchromatic simplex in (S,Πf) must have a

vertex v satisfying ‖f(v) − v‖ ≤ Θ(ε). Thus, a panchromatic simplex of (S,Πf) can be viewed

as an approximate, discrete fixed point of f .

Inspired by the Lemke-Howson algorithm, Scarf developed a path-following algorithm, using

simplicial subdivision, for computing approximate fixed points [61] and competitive equilibrium

prices [62]. The path-following method has also had extensive applications in mathematical pro-

gramming and has since grown into an algorithm-design paradigm in optimization and equilibrium

analysis.

1.2 Computer Science View of Nash Equilibria

Since the 1960’s, the theory of computation has shifted its focus from whether problems can be

solved on a computer to how efficiently problems can be solved on a computer. The field has

gained maturity with rapid advances in algorithm design, algorithm analysis, and complexity the-

ory. Problems are categorized into complexity classes capturing the difficulty of decision, search,

and optimization problems. The complexity classes P, RP, and BPP, and their search counter-

parts such as FP, have become the standard classes for characterizing tractable computational

problems3.

The rise of the internet has greatly enhanced the desire to find fast and polynomial-time

algorithms for computing equilibria [58]. Furthermore, the internet has created a surge of human

activities that make the computation, communication and optimization of participating agents

accessible at microeconomic levels. Efficient computation is instrumental in supporting basic

operations, such as pricing, in this large scale on-line market [59]. Many new problems in game

theory and economics have been introduced. In the meantime, classical problems in game theory

and economics have been studied actively by complexity theorists [58]. Algorithmic game theory

has grown into a highly interdisciplinary field intersecting economics, mathematics, operations

research, numerical analysis, and theoretical computer science.

2Let Ω be a d-dimensional simplex in R
d with vertices v1, ...,vd+1. Every point v ∈ R

d can be uniquely
expressed as v =

∑d+1
i=1 λivi, where

∑d+1
i=1 λi = 1. The barycentric coordinates of v with respect to v1, ...,vd+1 is

(λ1, ..., λd+1).
3
FP stands for Function Polynomial-Time. In this paper, as we only consider search problems, we will (ab)use

P and RP to denote the classes of search problems that can be solved in polynomial time and in randomized
polynomial time, respectively.

4

www.manaraa.com

In 1979, Khachiyan showed that the ellipsoid algorithm can solve a linear program in polyno-

mial time [42]. Shortly thereafter, Karmarkar improved the complexity for solving linear program-

ming with his path-following, interior-point algorithm [40]. His work initiated the implementation

of theoretically sound efficient linear programming algorithms. It had been a challenge for some

time (see [19]) to explain why some algorithms, most notably the simplex algorithm for linear

programming, though known to take exponential time in the worst case [43], were nevertheless

very fast in practice. Spielman and Teng [64] introduced a new algorithm analysis framework,

smoothed analysis, based on perturbation theory, to provide rigorous complexity-theoretic jus-

tification for the good practical performance of the simplex algorithm. They proved that the

smoothed complexity of the simplex algorithm with the shadow-vertex pivoting rule is polyno-

mial. As a result of these developments in linear programming, equilibrium solutions of two-player

zero-sum games can be found in polynomial time using the ellipsoid or interior-point algorithms

and in smoothed polynomial time using the simplex algorithm.

However, no polynomial-time algorithm has been found for computing discrete fixed points

or approximate fixed points, rendering the equilibrium proofs based on fixed point theorems

non-constructive in the view of polynomial-time computability.

The difficulty of discrete fixed point computation is partially justified in the query model.

In 1989, Hirsch, Papadimitriou, and Vavasis [34] provided an exponential lower bound on the

number of function evaluations necessary to find a discrete fixed point, even in two dimensions,

assuming algorithms only have a black-box access to the fixed point function. Their bound has

recently been made tight [10], and extended to the randomized query model [16] as well as to the

quantum query model [30, 16, 15].

1.3 Computational Complexity of Nash Equilibria: PPAD

Motivated by the pivoting structure used in the Lemke-Howson algorithm, Papadimitriou in-

troduced the complexity class PPAD [56]. PPAD is an abbreviation for Polynomial Parity

Argument in a Directed graph. He introduced several search problems concerning the computa-

tion of discrete fixed points. For example, he defined the problem Sperner to be the search

problem of finding a Sperner simplex given a boolean circuit that assigns colors to a particular

simplicial decomposition of a hypercube. Extending the model of [34], he also defined a search

problem for computing approximate Brouwer fixed points. He proved that even in three dimen-

sions, these fixed point problems are complete for the PPAD class. Recently, Chen and Deng

[11] proved that the two-dimensional discrete fixed point problem is also PPAD-complete. A

partial solution, showing that the problem is PPAD-complete for the locally two-dimensional

case, was obtained by Friedl, Ivanyos, Santha, and Verhoeven [31] at about the same time.

In [56], Papadimitriou also proved that Bimatrix, the problem of finding a Nash equilibrium

in a two-player game with rational payoffs is a member of PPAD. His proof can be extended to

show that finding a (properly defined) approximate equilibrium in a non-cooperative game among

three or more players is also in PPAD. Thus, if these problems are PPAD-complete, then the

problem of finding an equilibrium is polynomial-time equivalent to the search problem of finding

5

www.manaraa.com

a discrete fixed point.

It is conceivable that Nash equilibria might be easier to compute than discrete fixed points.

In fact, by taking advantage of the special structure of normal form games, Lipton, Markarkis,

and Mehta [50] developed a sub-exponential time algorithm for finding an approximate Nash

equilibrium in these games. In their notion of an ε-approximate Nash equilibrium, for a positive

parameter ε, each players’ strategy is at most an additive ε worse than the best response to

other players’ strategies. They proved that if all payoffs are in [0, 1], then an ε-approximate Nash

equilibrium can be found in nO(log n/ε2) time.

In a recent complexity-theoretic breakthrough, Daskalakis, Goldberg and Papadimitriou [21]

proved that the problem of computing a Nash equilibrium in a game among four or more players

is complete for PPAD. To cope with the fact that equilibria may not be rational, they considered

an approximation version of the problem by allowing exponentially small errors. The complexity

result was soon extended to three-player games [12, 25].

The results of [21, 12, 25] characterize the complexity of computing k-player Nash equilibria

for k ≥ 3. These latest complexity advances left open the two-player case.

1.4 Computing Two-Player Nash Equilibria and Smoothed Complexity

There have been amazing parallels between discoveries concerning the two-player zero-sum game

and the general two-player game. First, von Neumann proved the existence of an equilibrium for

the zero-sum game, then Nash did the same for the general game. Both classes of games have

rational equilibria when payoffs are rational. Second, more than a decade after von Neumann’s

Minimax Theorem, Dantzig developed the simplex algorithm, which can find a solution of a

two-player zero-sum game in a finite number of steps. Again, more than a decade after Nash’s

work, Lemke and Howson developed their finite-step algorithm for Bimatrix. Then, about a

quarter century after their respective developments, both the simplex algorithm [43] and the

Lemke-Howson algorithm [60] were shown to have exponential worst-case complexity.

A half century after von Neumann’s Minimax Theorem, Khachiyan proved that the ellipsoid

algorithm can solve a linear program and hence can find a solution of a two-player zero-sum

game with rational payoffs in polynomial time. Shortly after that, Borgwardt [7] showed that

the simplex algorithm has polynomial average-case complexity. Then, Spielman and Teng [64]

proved that the smoothed complexity of the simplex algorithm is polynomial. If history is of any

guide, then a half century after Nash’s Equilibrium Theorem, one could be hopeful of proving

the following two natural conjectures:

• Polynomial 2-Nash Conjecture: There exists a (weakly) polynomial-time algorithm for

Bimatrix.

• Smoothed Lemke-Howson Conjecture: The smoothed complexity of the Lemke-Howson al-

gorithm for Bimatrix is polynomial.

An upbeat attitude toward the first conjecture has been encouraged by the following two

facts. First, unlike three-player games, every rational two-player game has a rational equilibrium.

6

www.manaraa.com

Second, a key technical step in the PPAD-hardness proofs for three/four-player games fails to

extend to two-player games [21, 12, 25]. The Smoothed Lemke-Howson Conjecture was asked by

a number of people4 [1]. This conjecture is a special case of the following one, which was posted

by Spielman and Teng [65] in a survey of smoothed analysis of algorithms and inspired by the

result of Bárány, Vempala and Vetta [5] that an equilibrium of a random two-player game can be

found in polynomial time:

• Smoothed 2-Nash Conjecture: The smoothed complexity of Bimatrix is polynomial.

1.5 Our Contributions

Despite much effort in the last half century, it remains an open problem for characterizing the

algorithmic complexity of two-player Nash equilibria. Thus, Bimatrix, the most studied com-

putational problem about Nash equilibria, stood out as the last open problem in equilibrium

computation for normal form games. Papadimitriou [58] named it, along with Factoring, as

one of the two “most important concrete open questions” at the boundary of P. In fact, ever

since Khachiyan’s discovery [42], Bimatrix has been on the frontier of natural problems possi-

bly solvable in polynomial time. Now, it is also on the frontier of the hard problems, assuming

PPAD is not contained in P.

In this paper, building on the result of Daskalakis, Goldberg, and Papadimitriou (see Sec-

tion 2 for a detailed discussion), we settle the computational complexity of the two-player Nash

equilibrium. In later sections, we prove:

Theorem 1.1. Bimatrix is PPAD-complete.

Our result demonstrates that, even in this simplest form of non-cooperative games, equilibrium

computation is polynomial-time equivalent to discrete fixed point computation. In particular,

we show that from each discrete Brouwer function f , we can build a two-player game G and

a polynomial-time map Π from the Nash equilibria of G to the fixed points of f . Our proof

complements Nash’s proof that for each two-player game G, there is a Brouwer function f and a

map Φ from the fixed points of f to the equilibrium points of G.

The success in proving the PPAD completeness of Bimatrix inspired us to attempt to

disprove the Smoothed 2-Nash Conjecture. A connection between the smoothed complexity and

the approximation complexity of Nash equilibria ([65], Proposition 9.12) then led us to prove the

following result:

Theorem 1.2. For any c > 0, the problem of computing an n−c-approximate Nash equilibrium

of a two-player game is PPAD-complete.

This result enables us to establish the following theorem about the approximation of Nash

equilibria. It also enables us to answer the question about the smoothed complexity of the

Lemke-Howson algorithm and disprove the Smoothed 2-Nash Conjecture assuming PPAD is

not contained in RP.
4The question that has come up most frequently during presentations and talks on smoothed analysis is the

following: does the smoothed analysis of the simplex algorithm extend to the Lemke-Howson algorithm?

7

www.manaraa.com

Theorem 1.3. Bimatrix does not have a fully polynomial-time approximation scheme unless

PPAD is contained in P.

Theorem 1.4. Bimatrix is not in smoothed polynomial time unless PPAD is contained in

RP.

Consequently, it is unlikely that the nO(log n/ε2)-time algorithm of Lipton, Markakis, and Mehta

[50], the fastest algorithm known today for finding an ε-approximate Nash equilibrium, can be

improved to poly(n, 1/ε). Also, it is unlikely that the average-case polynomial time result of [5]

can be extended to the smoothed model.

1.6 Implications

Because two-player Nash equilibria enjoy several structural properties that Nash equilibria with

three or more players do not have, our result enables us to answer additional long-standing open

questions in mathematical economics. In particular, we derive the following important corollary.

Corollary 1.5. Arrow-Debreu market equilibria are PPAD-hard to compute.

To prove the corollary, we use a recent discovery of Ye [69] (see also [18]) on the connection

between two-player Nash equilibria and Arrow-Debreu equilibria in two-group Leontief exchange

economies.

We further refine our reduction to show that a Nash equilibrium in sparse a two-player game

is PPAD-complete to compute and PPAD-hard to approximate in fully polynomial time [13]

(see Section 10.1 for details).

Applying a recent reduction of Abbott, Kane, and Valiant [2], our result implies the following

corollary (here a win-lose game is a game whose payoff entries are either 0 or 1, and we use Win-

Lose Bimatrix to denote the problem of finding a Nash equilibrium in a two-player win-lose

game):

Corollary 1.6. Win-Lose Bimatrix is PPAD-complete.

Recently, Chen, Teng, and Valiant [17] extended the result to the approximation complexity

of Win-Lose Bimatrix; Huang and Teng [36] extended both the smoothed complexity and

the approximation results to the computation of Arrow-Debreu equilibria. Using the connection

between Nash equilibria and Arrow-Debreu equilibria, our complexity result on sparse games can

be extended to market equilibria in economies with sparse exchange structures [14].

2 Overview with Proof Sketches

In this section, we discuss previous work that our results build upon as well as the new techniques

and ideas that we introduce. As this paper is somewhat long, this section also serves as a shorter,

high-level description of the proofs. In the longer and more complete sections to follow, we will

present the technical details of our results.

8

www.manaraa.com

2.1 The DGP Framework

Technically, our main results apply a general proof framework developed in the work of Daskalakis,

Goldberg, and Papadimitriou [33, 21] for characterizing the complexity of four-player Nash equi-

libria. In the process, we introduce a few ideas to resolve the complexity of two-player Nash

equilibria.

The framework of Daskalakis, Goldberg, and Papadimitriou, which we will refer to as the DGP

framework, uses the following steps to establish that the problem of computing an exponentially

accurate approximate Nash equilibrium in a game among four or more players is complete for

PPAD.

1. It defines a 3-dimensional discrete fixed point problem, 3-Dimensional Brouwer, and

proves that it is complete for PPAD.

2. It establishes a geometric lemma (See Section 8.1), which introduces a sampling and averag-

ing technique, to characterize discrete fixed points. This lemma provides a computationally

efficient way to express the conditions of discrete fixed points and is the basis of the reduc-

tion in the next step.

3. It reduces 3-Dimensional Brouwer to degree-3 graphical games, a class of games pro-

posed in [41]. In this step, it constructs a set of gadgets, that is, a set of small graphical

games for which the entries of every exponentially accurate approximate Nash equilibrium

satisfy certain relations. These relations include the arithmetic relations (“addition”, “sub-

traction”, and “multiplication”), the logic relations (“and” and “or”), and several other

relations (“brittle comparator” and “assignment”). It then systematically connects and

combines these gadgets to simulate the input boolean circuit of 3-Dimensional Brouwer

and to encode the geometric lemma. The reduction scheme in this framework creatively

encodes fixed points by (approximate) Nash equilibria.

4. Finally, it reduces the graphical game to a four-player game. This step introduces the

idea of using the matching pennies game (see Section 7.3) to enforce the players to play

the strategies (almost) uniformly. One of the pivoting elements of this framework is a

new concept of approximate Nash equilibria which measures the pairwise stability of pure

strategies (see Section 3 for formal definition). This notion of approximate Nash equilibrium

is different from the ε-approximate Nash equilibrium used in Lipton, Markakis, and Mehta

[50].

With further refinements, as shown in [12, 25], the PPAD-completeness result can be extended

to the computation of an exponentially accurate approximate Nash equilibrium in a three-player

game.

Below, we outline the important steps we take in proving the main theorems of this paper —

Theorems 1.1, 1.2, 1.3, and 1.4.

9

www.manaraa.com

2.2 PPAD-Completeness of Bimatrix

To prove Theorem 1.1, in principle, we follow the first two steps of the DGP framework and make

some modifications to the last two steps. The reason why we only need two players instead of

four is due to the following observations:

1. We observe that the multiplication operation is unnecessary in the reduction from 3-

Dimensional Brouwer to graphical games [21] and come up with an approach to utilize

this simple yet important observation.

2. We realize that Step 3 in the DGP framework can be conceptually divided into two steps,

which we will refer to as Steps 3.1 and 3.2:

• In Step 3.1, it builds a constraint system from the input circuit of 3-Dimensional

Brouwer. The system consists of a collection of relations (arithmetic, logic, and

others) among a set of real variables. Every exponentially accurate solution to the

system — that is, an assignment to the variables that approximately satisfies all the

relations — can be transformed in polynomial time back to a discrete fixed point of

the original 3-Dimensional Brouwer problem.

• In Step 3.2, it simulates this constraint system with a degree-3 graphical game (by

simulating each relation with an appropriate gadget).

3. We develop a method to directly reduce a (multiplication-free) constraint system to a two-

player game, without using graphical games as an intermediate step.

In order to better express the (multiplication-free) constraint system, we introduce a concept

called the generalized circuit (see Section 5.2), which might be interesting on its own. On one

hand, the generalized circuit is a direct analog of the graphical games used in [33, 21]. On the

other hand, the generalized circuit is a natural extension of the classical algebraic circuit —

the pivotal difference is that the underlying directed graph of a generalized circuit may contain

cycles, which is necessary for expressing fixed points. Using this intermediate structure, we follow

Step 3.1 of the DGP framework to show that 3-Dimensional Brouwer can be reduced to the

computation of an exponentially accurate solution in a generalized circuit.

As an instrumental step in our proof, we show that there is a polynomial-time reduction from

the problem of finding an exponentially accurate solution in a generalized circuit to Bimatrix,

hence proving that Bimatrix is PPAD-complete.

In fact, the reduction from generalized circuits to two-player games does not directly imply

a natural reduction from degree-3 graphical games to two-player games. Of course, due to the

PPAD-completeness of these problems, one could first construct a generalized circuit from a

degree-3 graphical game, and then reduce it to a two-player game. So far, we are not aware of a

more direct reduction from degree-3 graphical games to two-player games.

A subtle but critical point of our reduction is that it may connect some exact Nash equilibria

of the obtained two-player game with only approximate solutions to the original generalized

circuit. In contrast, in the reduction of [21], every exact Nash equilibrium of the four-player

10

www.manaraa.com

game can be transformed back into an exact Nash equilibrium of the original graphical game.

The loss of exactness in our reduction is especially necessary because every rational two-player

game always has a rational equilibrium. Like the graphical games and three-player games, some

rational generalized circuits only have irrational solutions.

2.3 Fully Polynomial-Time Approximation of Nash Equilibria

There is a fundamental reason why the DGP framework and our approach of the previous sub-

section do not immediately prove Theorems 1.2 and 1.3: The underlying three-dimensional grid

of the PPAD-complete 3-Dimensional Brouwer must have an exponential number of points

in some dimension. Thus, in order to specify a point in the grid, one needs Θ(n)-bits for that

dimension. Then, in order to encode the discrete fixed points of 3-Dimensional Brouwer

directly with approximate Nash equilibria, the latter must be exponentially accurate. In order

to establish Theorems 1.2 and 1.3, however, we need to encode the discrete fixed points of a

PPAD-complete fixed point problem with polynomially-accurate approximate Nash equilibria!

We consider a natural high-dimensional extension of 3-Dimensional Brouwer. The obser-

vation is the following. The underlying grid for 3-Dimensional Brouwer is {0, 1, ..., 2n}3. It

has 23n cells, each of which is a cube and can be identified by three n-bit integers. Note that the

n-dimensional grid {0, 1, ..., 8}n also has 23n cells, each of which is an n-dimensional hypercube.

Each hypercube in this high-dimensional grid can be identified by n three-bit integers. Thus, we

need much less precision in each dimension.

The high-dimensional discrete fixed point problem comes with its own challenges. In 3-

Dimensional Brouwer of Daskalakis, Goldberg, and Papadimitriou, each vertex of the 3D

grid is colored with one of the 4 colors from {1, 2, 3, 4}, specified by a boolean circuit that

guarantees some boundary conditions. As a search problem, we are given this circuit and are

asked to find a panchromatic cube whose vertices contain all four colors. Similarly, in the high-

dimensional discrete fixed point problem, which we will refer to as Brouwer, each vertex of the

n-dimensional grid is colored with one of the n + 1 colors from {1, ..., n, n + 1}, also specified by

a boolean circuit. However, computationally, we can no longer define a discrete fixed point as a

panchromatic hypercube. In n dimensions, a hypercube has 2n vertices, which is exponential in

n — too many for verifying the panchromatic condition in polynomial time. Following Sperner

and the intuition of 3-Dimensional Brouwer of Daskalakis, Goldberg, and Papadimitriou, we

define a discrete fixed point as a panchromatic simplex inside a hypercube. We then prove that

Brouwer is also PPAD-complete.

The exponential curse of dimensionality, often referred to by computational geometers, goes

beyond the definition of discrete fixed points: the original sampling-and-averaging technique used

in Step 3.1 of the DGP framework does not seem to provide a computationally efficient way to

express the conditions of fixed points in high dimensions. We develop a new geometric sampling

method (see Lemma 8.2) for overcoming this curse of dimensionality.

Now, if we follow the original DGP framework with Brouwer as the starting point and

make use of our new sampling method in Step 3.1, we can prove that the problem of computing

11

www.manaraa.com

a Nash equilibrium in a four-player game does not have a fully-polynomial-time approximation

scheme, unless PPAD is in P. To prove Theorems 1.2 and 1.3, we follow the modified DGP

framework we presented in the last subsection. In particular, we use the new sampling method

to reduce Brouwer to the computation of a polynomially accurate solution to a generalized

circuit, and then further to the computation of a polynomially approximate Nash equilibrium in

a two-player game. In the first reduction, we only need polynomial accuracy because the side

length of Brouwer is a constant (in contrast to 3-Dimensional Brouwer, in which the side

length is exponential).

Finally, to establish the approximation result to the commonly accepted ε-approximate Nash

equilibrium, we derive an equivalence relation (see Lemma 3.2) between the ε-approximate Nash

equilibrium and the new approximation notion used in the DGP framework.

2.4 The Smoothed Complexity of Nash Equilibria

The proof of Theorem 1.4 is then the simplest part of the paper. It follows directly from Theorem

1.2 and an observation of Spielman and Teng (see Proposition 9.12 of [65]) on the connection

between the smoothed complexity and approximation complexity of Nash equilibria.

2.5 Paper Organization

At a very high level, our proofs apply the DGP framework with several new parts that we intro-

duce. However, there are a number of details and differences that make it worthwhile and neces-

sary to give complete proofs of our main results. Readers familiar with the work of Daskalakis,

Goldberg, and Papadimitriou [33, 21] will be able to appreciate how we build on their insights to

obtain our results.

In the rest of the paper, we will prove Theorem 1.2, which implies Theorem 1.1, and derive

Theorem 1.4. We organize the paper as follows.

In Section 3, we review concepts in equilibrium theory. We also prove an important equivalence

between various notions of approximate Nash equilibria. In Section 4, we recall the complexity

class PPAD, the concept of polynomial-time reduction among search problems, and the smoothed

analysis framework. In Section 5, we introduce two concepts: high-dimensional discrete Brouwer

fixed points and generalized circuits, followed by the definitions of two search problems based on

these concepts. In Section 6, we state our main results and provide an outline of the proofs. In

Section 7, we show that one can simulate generalized circuits with two-player games. In Section

8, we show that discrete fixed points can be modeled by generalized circuits. In Section 9, we

prove a PPAD-completeness result for a large family of high-dimensional discrete fixed point

problems. In Section 10, we discuss extensions of our work and present several open questions

and conjectures motivated by this research. In particular, we show that sparse Bimatrix does

not have a fully polynomial-time approximation scheme unless PPAD is in P. Finally, in Section

11, we thank many wonderful people who helped us in this work.

12

www.manaraa.com

2.6 Notation

We use bold lower-case Roman letters such as x, a, bj to denote vectors. Whenever a vector such

as a ∈ Rn is present, its components will be denoted by lower-case Roman letters with subscripts

as a1, ..., an. Matrices are denoted by bold upper-case Roman letters such as A and scalars are

usually denoted by lower-case Roman letters, but sometimes by upper-case Roman letters such

as M , N , and K. The (i, j)th entry of a matrix A is denoted by ai,j. Depending on the context,

we may use ai to denote the ith row or the ith column of A.

We now enumerate some other notations that are used in this paper. For positive integer n,

we let [n] denote the set {1, 2, ..., n} ⊂ Z; we let Zd
+ denote the set of d-dimensional vectors with

positive integer entries; let 〈a|b〉 denote the dot-product of two vectors in the same dimension;

let ei denote the unit vector whose ith entry is equal to 1 and other entries are 0; and let

‖ · ‖1 and ‖ · ‖∞ denote the L1-norm and the infinity norm, respectively: ‖x‖1 =
∑d

i=1 |xi| and

‖x‖∞ = max1≤i≤d |xi|, for x ∈ Rd. Finally, for a, b ∈ R, by a = b ± ε, we mean b − ε ≤ a ≤ b + ε.

3 Two-Player Nash Equilibria

A two-player game [55, 46, 47] is a non-cooperative game between two players, where both players

simultaneously choose an action, and then receive a payoff that is a function of the pair of chosen

actions. When the first player has m choices of actions and the second player has n choices

of actions, the game, in its normal form, can be specified by two m × n matrices A = (ai,j)

and B = (bi,j). If the first player chooses action i and the second player chooses action j, then

their payoffs are ai,j and bi,j, respectively. Thus, a two-player game is also often referred to

as a bimatrix game. A mixed strategy of a player is a probability distribution over his or her

choices. Nash’s Equilibrium Theorem [55, 54], when specialized to bimatrix games, asserts that

every two-player game has an equilibrium point, i.e., a pair of mixed strategies, such that neither

player can gain by changing his or her strategy unilaterally. The zero-sum two-player game [53]

is a special case of the bimatrix game that satisfies B = −A.

Let Pn denote the set of all probability vectors in Rn, i.e., non-negative, length n vectors

whose entries sum to 1. Then, a pair of mixed strategies can be expressed by two column vectors

(x ∈ Pm,y ∈ Pn). Let ai and bj denote the ith row of A and the jth column of B, respectively.

In a pair of mixed strategies (x,y), the expected payoff of the first player when choosing the ith

row is aiy, and the expected payoff of the second player when choosing the ith column is xTbi;

the expected payoff of the first player is xTAy, and the expected payoff of the second player is

xTBy.

Mathematically, a Nash equilibrium of a bimatrix game (A,B) is a pair (x∗ ∈ Pm,y∗ ∈ Pn)

such that

(x∗)T Ay∗ ≥ xTAy∗ and (x∗)T By∗ ≥ (x∗)T By, for all x ∈ Pm and y ∈ Pn.

Computationally, one might settle with an approximate Nash equilibrium. Several notions of

approximate equilibria have been defined in the literature. The following are two most popular

13

www.manaraa.com

ones [50, 39]. However, in the rest of the paper, we use a third notion of approximate equilibria,

which was introduced in [21] for the study of the complexity of equilibrium approximation. We

will define it later in this section.

For a positive parameter ε, an ε-approximate Nash equilibrium of a bimatrix game (A,B) is

a pair (x∗ ∈ Pm,y∗ ∈ Pn) such that

(x∗)TAy∗ ≥ xTAy∗ − ε and (x∗)TBy∗ ≥ (x∗)TBy − ε, for all x ∈ Pm and y ∈ Pn.

For two nonnegative matrices A and B, an ε-relatively-approximate Nash equilibrium of (A,B)

is a pair (x∗,y∗) such that

(x∗)TAy∗ ≥ (1 − ε)xTAy∗ and (x∗)TBy∗ ≥ (1 − ε)(x∗)TBy, for all x ∈ Pm and y ∈ Pn.

Nash equilibria of a bimatrix game (A,B) are invariant under positive scalings, meaning, the

bimatrix game (c1A, c2B) has the same set of Nash equilibria as (A,B), when c1, c2 > 0. They

are also invariant under shifting: For any constants c1 and c2, the bimatrix game (c1 +A, c2 +B)

has the same set of Nash equilibria as (A,B). It is easy to verify that ε-approximate Nash

equilibria are also invariant under shifting. However, each ε-approximate Nash equilibrium (x,y)

of (A,B) becomes a (c ·ε)-approximate Nash equilibrium of the bimatrix game (cA, cB) for c > 0.

Meanwhile, ε-relatively-approximate Nash equilibria are invariant under positive scaling, but may

not be invariant under shifting.

Because the ε-approximate Nash equilibrium is sensitive to scaling of A and B, when studying

its complexity, it is important to consider bimatrix games with normalized matrices, in which

the absolute value of each entry of A and B is bounded, for example, by 1. Earlier work on this

subject by Lipton, Markakis, and Mehta [50] used a similar normalization. Let R
m×n
[a,b] denote the

set of m × n matrices with real entries between a and b. In this paper, we say a bimatrix game

(A,B) is normalized if A,B ∈ R
m×n
[−1,1] and is positively normalized if A,B ∈ R

m×n
[0,1] .

For positively normalized bimatrix games, one can prove the following relation between the

two notions:

Proposition 3.1. In a positively normalized bimatrix game (A,B), every ε-relatively-approximate

Nash equilibrium is also an ε-approximate Nash equilibrium.

To define our main search problems of computing and approximating a two-player Nash

equilibrium, we first define the input models. The most general input model is the real model in

which a bimatrix game is specified by two real matrices (A,B). In the rational model, each entry

of the payoff matrices is given by the ratio of two integers. The input size is then the total number

of bits describing the payoff matrices. Clearly, by multiplying by the common denominators in

a payoff matrix and using the fact that two-player Nash equilibria are invariant under positive

scaling, we can transform a rational bimatrix game into an integer bimatrix game. Moreover, the

total number of bits in this game with integer payoffs is within a factor of poly(m,n) of the input

size of its rational counterpart. In fact, Abbott, Kane, and Valiant [2] made it much simpler,

showing that from every bimatrix game with integer payoffs, one can construct a “homomorphic”

14

www.manaraa.com

bimatrix game with 0-1 payoffs whose size is within a polynomial factor of the input size of the

original game.

We recall the proof of the well-known fact that each rational bimatrix game has a rational

Nash equilibrium. Suppose (A,B) is a rational two-player game and (u,v) is one of its Nash

equilibria. Let row-support = {i | ui > 0} and column-support = {i | vi > 0}. Let ai and bj

denote the ith row of A and the jth column of B, respectively. Then, by the condition of the

Nash equilibrium, (u,v) is a feasible solution to the following linear program:

∑

i xi = 1 and
∑

i yi = 1

xi = 0, ∀i &∈ row-support

yi = 0, ∀i &∈ column-support

xi ≥ 0, ∀i ∈ row-support

yi ≥ 0, ∀i ∈ column-support

aiy = ajy, ∀i, j ∈ row-support

xTbi = xTbj, ∀i, j ∈ column-support

aiy ≤ ajy, ∀i &∈ row-support, j ∈ row-support

xTbi ≤ xTbj, ∀i &∈ column-support, j ∈ column-support.

In fact, any solution to this linear program is a Nash equilibrium of (A,B). Therefore, (A,B)

has at least one rational equilibrium point such that the total number of bits describing this

equilibrium is within a polynomial factor of the input size of (A,B). By enumerating all possible

row supports and column supports and solving the linear program above, we can find a Nash

equilibrium of game (A,B). This exhaustive-search algorithm takes 2m+npoly(L) time where L

is the input size of the game, and m and n are, respectively, the number of rows and the number

of columns.

In this paper, we use Bimatrix to denote the problem of finding a Nash equilibrium in a

rational bimatrix game. Without loss of generality, we make two assumptions about Bimatrix:

all input games are positively normalized and both players have the same number of choices

of actions. Two important parameters associated with each instance of Bimatrix are: n, the

number of actions, and L, the input size of the game. Thus, Bimatrix is in P if there exists an

algorithm for Bimatrix with running time poly(L). We note as an aside that, in the two-player

games we construct in this paper, parameter L is a polynomial of n.

We also consider two families of approximation problems for two-player Nash equilibria. For

a positive constant c,

• let Expc-Bimatrix denote the following search problem: Given a rational and positively

normalized n× n bimatrix game (A,B), compute a 2−cn-approximate Nash equilibrium of

(A,B);

• let Polyc-Bimatrix denote the following search problem: Given a rational and positively

normalized n×n bimatrix game (A,B), compute an n−c-approximate Nash equilibrium of

15

www.manaraa.com

(A,B);

In our analysis, we will use an alternative notion of approximate Nash equilibria as intro-

duced in [21], originally called ε-Nash equilibria, which measures the pairwise stability of pure

strategies. To emphasize this pairwise stability and distinguish it from the more commonly used

ε-approximate Nash equilibrium, we refer to this type of equilibria as well-supported approximate

Nash equilibria5.

For a positive parameter ε, a pair of strategies (x∗ ∈ Pn,y∗ ∈ Pn) is an ε-well-supported Nash

equilibrium of (A,B) if for all j and k (recall that ai and bi denote the ith row of A and the ith

column of B, respectively),

(x∗)Tbj > (x∗)Tbk + ε ⇒ y∗k = 0 and ajy
∗ > aky

∗ + ε ⇒ x∗
k = 0.

A Nash equilibrium is a 0-well-supported Nash equilibrium as well as a 0-approximate Nash

equilibrium. The following lemma, a key lemma in the study of the complexity of equilibrium

approximation, shows that approximate Nash equilibria and well-supported Nash equilibria are

polynomially related. This relation allows us to focus on pairwise comparisons, between any two

pure strategies, in approximation conditions.

Lemma 3.2 (Polynomial Equivalence). In a bimatrix game (A,B) with A,B ∈ R
n×n
[0,1] , for any

0 ≤ ε ≤ 1,

1. each ε-well-supported Nash equilibrium is also an ε-approximate Nash equilibrium; and

2. from any ε2/8-approximate Nash equilibrium (u,v), one can find in polynomial time an

ε-well-supported Nash equilibrium (x,y).

Proof. The first statement follows from the definitions.

Because (u,v) is an ε2/8-approximate Nash equilibrium, we have

∀ u′ ∈ P
n, (u′)TAv ≤ uTAv + ε2/8, and ∀ v′ ∈ P

n, uTBv′ ≤ uTBv + ε2/8.

Recall that ai denotes the ith row of A and bi denotes the ith column of B. Let i∗ be an index

such that ai∗v = max1≤i≤n aiv. We use J1 to denote the set of indices j : 1 ≤ j ≤ n such that

ai∗v ≥ ajv + ε/2. Now by changing uj to 0 for all j ∈ J1, and changing ui∗ to ui∗ +
∑

j∈J1
uj ,

we can increase the first-player’s profit by at least (ε/2)
∑

j∈J1
uj , implying

∑

j∈J1
uj ≤ ε/4.

Similarly, we define J2 = { j : 1 ≤ j ≤ n and ∃ i, uTbi ≥ uTbj + ε/2}, and have
∑

j∈J2
vj ≤ ε/4.

Let (x,y) be the vectors obtained by modifying u and v in the following manner: set all the

{uj | j ∈ J1} and {vj | j ∈ J2} to zero; uniformly increase the probabilities of other strategies so

that x and y are mixed strategies.

Note that for all i ∈ [n], |aiy − aiv | ≤ ε/4, because we assume the value of each entry in

ai is between 0 and 1. Therefore, for every pair i, j : 1 ≤ i, j ≤ n, the relative change between

5We are honored and humbled that in their Journal version, Daskalakis, Goldberg, and Papadimitriou [22] also
adopted the name “well-supported approximate Nash equilibria.”

16

www.manaraa.com

aiy − ajy and aiv − ajv is no more than ε/2. Thus, any j that is beaten by some i by a gap of

ε is already set to zero in (x,y). As a result, (x,y) is an ε-well-supported Nash equilibrium, and

the second statement follows.

We conclude this section by pointing out that there are other natural notions of approximation

for equilibrium points. In addition to the rational representation of a rational equilibrium, one can

use binary representations to define entries in an equilibrium. As each entry p in an equilibrium

is a number between 0 and 1, we can specify it using its binary representation (0.c1 · · · cP · · ·),

where ci ∈ {0, 1} and p = limi→∞
∑i

j=1 cj/2j . Some rational numbers may not have a finite

binary representation. Usually, we round off the numbers to store their finite approximations.

The first P bits c1, ..., cP give us a P -bit approximation p̃ of p: p̃ =
∑P

i=1 ci/2i.

For a positive integer P , we use P -Bit-Bimatrix to denote the search problem of computing

the first P bits of the entries of a Nash equilibrium in a rational bimatrix game. The following

proposition relates P -Bit-Bimatrix with Polyc-Bimatrix. A similar proposition is stated and

proved in [17].

Proposition 3.3. Let (x,y) be a Nash equilibrium of a positively normalized n×n bimatrix game

(A,B). For a positive integer P , let (x̃, ỹ) be the P -bit approximation of (x,y). Let x̄ = x̃/ ‖x̃‖1

and ȳ = ỹ/ ‖ỹ‖1. Then, (x̄, ȳ) is a (3n2−P)-approximate Nash equilibrium of (A,B).

Proof. Let a = 2−P . Consider any x′ ∈ Pn. We have

(x′)T Aȳ ≤ (x′)TAỹ + na ≤ (x′)T Ay + na ≤ xTAy + na

≤ x̃TAy + 2na ≤ x̃TAỹ + 3na ≤ x̄TAỹ + 3na ≤ x̄TAȳ + 3na.

To see the first inequality, note that since the game is positively normalized, every component in

(x′)TA is between 0 and 1. The inequality follows from the fact that ȳi ≥ ỹi for all i ∈ [n], and

‖ỹ‖1 ≥ 1 − na. The other inequalities can be proved similarly.

4 Complexity and Algorithm Analysis

In this section, we review the complexity class PPAD and the concept of polynomial-time re-

ductions among search problems. We define the perturbation models in the smoothed analysis

of Bimatrix and show that if the smoothed complexity of Bimatrix is polynomial, then we can

compute an ε-approximate Nash equilibrium of a bimatrix game in randomized polynomial time.

4.1 PPAD and Polynomial-Time Reduction Among Search Problems

A binary relation R ⊂ {0, 1}∗ × {0, 1}∗ is polynomially balanced if there exist constants c and k

such that for all pairs (x, y) ∈ R, we have |y | ≤ c |x |k, where |x | denotes the length of string x.

It is polynomial-time computable if for each pair (x, y), one can decide whether or not (x, y) ∈ R

in time polynomial in |x | + |y |. A relation R is total if for every string x ∈ {0, 1}∗, there exists

y such that (x, y) ∈ R.

17

www.manaraa.com

For a binary relation R that is both polynomially balanced and polynomial-time computable,

one can define the NP search problem SearchR specified by R as: Given x ∈ {0, 1}∗, return a y

satisfying (x, y) ∈ R if such y exists, otherwise, return a special string “no”. Following Megiddo

and Papadimitriou [52], we use TFNP to denote the class of all NP search problems specified

by total relations.

A search problem SearchR1 ∈ TFNP is polynomial-time reducible to problem SearchR2 ∈

TFNP if there exists a pair of polynomial-time computable functions (f, g) such that for every

x of R1, if y satisfies that (f(x), y) ∈ R2, then (x, g(y)) ∈ R1. In another word, one can use f to

transform any input instance x of SearchR1 into an input instance f(x) of SearchR2, and use

g to transform any solution y to f(x) back into a solution g(y) to x. Search problems SearchR1

and SearchR2 are polynomial-time equivalent if SearchR2 is also reducible to SearchR1.

The complexity class PPAD [57] is a sub-class of TFNP, containing all search problems that

are polynomial-time reducible to the following problem called End-of-Line:

Definition 4.1 (End-of-Line). The input instance of End-of-Line is a pair (0n,M) where 0n

is a binary string of n 0’s, and M is a boolean circuit with n input bits. M defines a function

M , over {0, 1}n, satisfying:

• for every v ∈ {0, 1}n, M(v) is an ordered pair (u1, u2) where u1, u2 ∈ {0, 1}n ∪ {“no”};

• M(0n) = (“no”, u) for some u ∈ {0, 1}n and the first component of M(u) is 0n.

This instance defines a directed graph GM = (V,EM) with V = {0, 1}n and (u, v) ∈ EM , if

and only if v is the second component of M(u) and u is the first component of M(v).

A vertex v ∈ V is called an end vertex of GM if the summation of its in-degree and out-degree

is equal to one. The output of the problem is an end vertex of GM other than 0n,

Note that in graph GM , both the in-degree and the out-degree of each vertex are at most

1. Thus, edges of GM form a collection of directed paths and directed cycles. Because 0n has

in-degree 0 and out-degree 1, it is an end vertex of GM , and thus, GM has at least one directed

path. As a result, it has another end vertex and End-of-Line is a member of TFNP. In fact,

GM has an odd number of end vertices other than 0n. By evaluating the boolean circuit M on

an input v ∈ {0, 1}n, we can access the candidate predecessor and the candidate successor of v.

Many important problems, including the search versions of Brouwer’s Fixed Point Theorem,

Kakutani’s Fixed Point Theorem, Smith’s Theorem, and Borsuk-Ulam Theorem, have been shown

to be in the class PPAD [56]. Bimatrix is also in PPAD [56]. As a corollary, for all c > 0,

Polyc-Bimatrix and Expc-Bimatrix are in PPAD.

However, it is not clear whether P -Bit-Bimatrix, for a positive integer P , is in PPAD or

not, though obviously it is easier than Bimatrix. The reason is that we do not know whether

P -Bit-Bimatrix is in TFNP (recall PPAD is a subclass of TFNP). More exactly, given a pair

of vectors (x,y) in which all xi, yi have the form 0.c1...cP where cj ∈ {0, 1}, we do not know how

to check in polynomial time whether (x,y) is the P -bit approximation of an equilibrium or not.

18

www.manaraa.com

4.2 Smoothed Models of Bimatrix Games

In the smoothed analysis of bimatrix games, we consider perturbed games in which each entry

of the payoff matrices is subject to a small and independent random perturbation. For a pair of

n×n positively normalized matrices A = (ai,j) and B = (bi,j), in the smoothed model, the input

instance6 is defined by (A,B) where ai,j and bi,j are, respectively, independent perturbations of

āi,j and b̄i,j with magnitude σ (see below). There are several models of perturbations for ai,j and

bi,j with magnitude σ [65]. The two common ones are the uniform perturbation and the Gaussian

perturbation.

In a uniform perturbation with magnitude σ, ai,j and bi,j are chosen uniformly from the

intervals [āi,j − σ, āi,j + σ] and [b̄i,j − σ, b̄i,j + σ], respectively. In a Gaussian perturbation with

magnitude σ, ai,j and bi,j are obtained from perturbations of āi,j and b̄i,j, respectively, by adding

independent random variables distributed as Gaussians with mean 0 and standard deviation σ.

We refer to these perturbations as σ-uniform and σ-Gaussian perturbations, respectively.

The smoothed time complexity of an algorithm J for Bimatrix is defined as follows: Let

TJ(A,B) be the complexity of J for finding a Nash equilibrium in a bimatrix game (A,B). Then,

the smoothed complexity of J under perturbations Nσ() of magnitude σ is (We use A ← Nσ(Ā)

to denote that A is a perturbation of Ā according to Nσ())

SmoothedJ [n,σ] = max
Ā,B̄∈R

n×n
[0,1]

EA←Nσ(Ā),B←Nσ(B̄) [TJ(A,B)] .

An algorithm J has a polynomial smoothed time complexity [65] if for all 0 < σ < 1 and for

all positive integers n, there exist positive constants c, k1 and k2 such that

SmoothedJ [n,σ] ≤ c · nk1σ−k2.

Bimatrix is in smoothed polynomial time if there exists an algorithm J with polynomial smoothed

time complexity for computing a two-player Nash equilibrium.

The following lemma shows that if the smoothed complexity of Bimatrix is low, under

uniform or Gaussian perturbations, then one can quickly find an approximate Nash equilibrium.

Lemma 4.2 (Smoothed Nash vs Approximate Nash). If problem Bimatrix is in smoothed poly-

nomial time under uniform or Gaussian perturbations, then for all ε > 0, there exists a randomized

algorithm to compute an ε-approximate Nash equilibrium in a two-player game with expected time

O (poly(m,n, 1/ε)).

Proof. Informally argued in [65]. See Appendix A for a proof of the uniform case.

6For the simplicity of presentation, in this subsection, we model entries of payoff matrices and perturbations by
real numbers. Of course, to connect with the complexity result of the previous section, where entries of matrices
are in finite representations, we are mindful that some readers may prefer that we state our result and write the
proof more explicitly using the finite representations. Using Equations (21) and (22) in the proof of Lemma 4.2
(see Appendix A), we can define a discrete version of the uniform and Gaussian perturbations and state and prove
the same result.

19

www.manaraa.com

5 Two Search Problems

In this section, we consider two search problems that are essential to our main results. First,

we define a class of high-dimensional discrete fixed point problems, which is a generalization of

the 3-Dimensional Brouwer proposed in [21]. Then we introduce the concept of generalized

circuits, a structure used implicitly in Step 3 of the DGP framework (see Section 2).

5.1 Discrete Brouwer Fixed Points

The following is an obvious fact: Suppose we color the endpoints of an interval [0, n] by two

distinct colors, say red and blue, insert n − 1 points evenly into this interval to subdivide it into

n unit subintervals, and color these new points arbitrarily with the two colors. Then there must

be a bichromatic subinterval, i.e., a unit subinterval whose two endpoints have distinct colors.

Our first search problem is built on a high-dimensional extension of this fact. Instead of

coloring points in a subdivision of an interval, we color the vertices in a hypergrid. When the

dimension is d we use d + 1 colors.

For positive integer d and r ∈ Zd
+, let Ad

r = {q ∈ Zd
∣

∣ 0 ≤ qi ≤ ri − 1,∀ i ∈ [d]} denote the

vertices of the hypergrid with side lengths specified by r. The boundary of Ad
r, denoted by ∂(Ad

r),

is the set of points q ∈ Ad
r with qi ∈ {0, ri − 1} for some i. Let Size [r] =

∑

1≤i≤d 2 log ri 3, that

is, the number of bits needed to encode a point in Ad
r.

In one dimension, the interval [0, n] is the union of n unit subintervals. In d dimensions, the

hypergrid Ad
r can be viewed as the union of a collection of unit hypercubes. For a point p ∈ Zd,

let Kp = {q ∈ Zd
∣

∣ qi ∈ {pi, pi + 1} ,∀ i ∈ [d]} be the vertices of the unit hypercube with p as

its lowest-coordinate corner.

As a natural extension of 3-Dimensional Brouwer of Daskalakis, Goldberg, and Papadim-

itriou [21], we can color the vertices of a hypergrid with the (d + 1) colors {1, 2, ..., d + 1}. As in

one dimension, the coloring of the boundary vertices needs to meet certain requirements in the

context of the discrete Brouwer fixed point problem. A color assignment φ of Ad
r is valid if φ(p)

satisfies the following condition: For p ∈ ∂(Ad
r), if there exists an i ∈ [d] such that pi = 0 then

φ(p) = max{ i
∣

∣ pi = 0}; for other boundary points, let φ(p) = d + 1. In the latter case, ∀ i,

pi &= 0 and ∃ i, pi = ri − 1.

The following theorem is a high-dimensional extension of the one-dimensional fact mentioned

above. It is also an extension of the two-dimensional Sperner’s Lemma.

Theorem 5.1 (High-Dimensional Discrete Brouwer Fixed Points). For positive integer d and

r ∈ Zd
+, for any valid coloring φ of Ad

r, there is a unit hypercube in Ad
r whose vertices have all

d + 1 colors.

In other words, Theorem 5.1 asserts that there exists a p ∈ Ad
r such that φ assigns all (d + 1)

colors to Kp. We call Kp a panchromatic cube. However, in d-dimensions, a panchromatic cube

contains 2d vertices. This exponential dependency in the dimension makes it inefficient to check

whether a hypercube is panchromatic. We introduce the following notion of discrete fixed points.

20

www.manaraa.com

Definition 5.2 (Panchromatic Simplex). A subset P ⊂ Ad
r is accommodated if P ⊂ Kp for some

point p ∈ Ad
r. P ⊂ Ad

r is a panchromatic simplex of a color assignment φ if it is accommodated

and contains exactly d + 1 points with d + 1 distinct colors.

Corollary 5.3 (Existence of a Panchromatic Simplex). For positive integer d and r ∈ Zd
+, for

any valid coloring φ of Ad
r, there exists a panchromatic simplex in Ad

r.

We can define a search problem based on Corollary 5.3. An input instance is a hypergrid

together with a boolean circuit for coloring the vertices of the hypergrid.

Definition 5.4 (Brouwer-Mapping Circuit and Color Assignment). For positive integer d and

r ∈ Zd
+, a boolean circuit C with Size [r] input bits and 2d output bits ∆+

1 ,∆−
1 , ...,∆+

d ,∆−
d is a

valid Brouwer-mapping circuit (with parameters d and r) if the following is true:

• For every p ∈ Ad
r, the 2d output bits of C evaluated at p satisfy one of the following d + 1

cases:

– Case i, 1 ≤ i ≤ d: ∆+
i = 1 and all other 2d − 1 bits are 0;

– Case (d + 1): ∀ i, ∆+
i = 0 and ∆−

i = 1.

• For every p ∈ ∂(Ad
r), if there exists an i ∈ [d] such that pi = 0, letting imax = max{ i

∣

∣ pi =

0}, then the output bits satisfy Case imax, otherwise (∀ i, pi &= 0 and ∃ i, pi = ri − 1), the

output bits satisfy Case d + 1.

Such a circuit C defines a valid color assignment ColorC : Ad
r → {1, 2, ..., d, d + 1} by setting

ColorC [p] = i, if the output bits of C evaluated at p satisfy Case i.

To define high-dimensional Brouwer’s fixed point problems, we need a notion of well-behaved

functions (please note that this is not the coloring function in the fixed point problem) to pa-

rameterize the shape of the search space. An integer function f(n) is called well-behaved if it is

polynomial-time computable and there exists an integer constant n0 such that 3 ≤ f(n) ≤ 2n/23

for all n ≥ n0. For example, let f1, f2, f3 and f4 denote the following functions:

f1(n) = 3, f2(n) = 2n/23, f3(n) = 2n/33, and f4(n) = 2log n3.

It is easy to check that they are all well-behaved. Besides, since f(n) ≤ 2n/23 for large enough

n, we have 2n/f(n)3 ≥ 2.

Definition 5.5 (Brouwerf). For each well-behaved function f , the problem Brouwerf is de-

fined as follows: Given a pair (C, 0n), where C is a valid Brouwer-mapping circuit with parameters

d = 2n/f(n)3 and r ∈ Zd
+ where ∀ i ∈ [d], ri = 2f(n), find a panchromatic simplex of C.

The input size of problem Brouwerf is the sum of n and the size of the circuit C. When n

is large enough, Brouwerf2 is a two-dimensional search problem over grid {0, 1, ..., 2*n/2+ − 1}2,

Brouwerf3 is a three-dimensional search problem over {0, 1, ..., 2*n/3+ − 1}3, and Brouwerf1

is an 2n/33-dimensional search problem over {0, 1, ..., 7}*n/3+ . Each of these three grids contains

21

www.manaraa.com

G +
G =

G x 0 . 5

v 1 v 2

v 3

v 4

G = 0 . 2

Figure 1: An example of a generalized circuit

roughly 2n hypercubes. Both Brouwerf2 [11] and Brouwerf3 [21] are known to be complete

in PPAD. In section 9, we will prove for every well-behaved function f , Brouwerf is PPAD-

complete. Therefore, the complexity of finding a panchromatic simplex is essentially independent

of the shape or dimension of the search space. In particular, the theorem implies that Brouwerf1

is PPAD-complete.

5.2 Generalized Circuits and Their Assignment Problem

To effectively connect discrete Brouwer fixed points with two-player Nash equilibria, we use an

intermediate structure called the generalized circuit. This family of circuits, used implicitly in

[21], extends the standard classes of boolean or arithmetic circuits in several ways.

Syntactically, a generalized circuit S is a pair (V,T), where V is a set of nodes and T is a

collection of gates. Every gate T ∈ T is a 5-tuple T = (G, v1, v2, v,α) in which

• G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬} is the type of the gate. Among the nine types

of gates, Gζ , G×ζ , G=, G+ and G− are arithmetic gates implementing arithmetic constraints

like addition, subtraction and constant multiplication. G< is a brittle comparator: it only

distinguishes values that are properly separated. Finally, G∧, G∨ and G¬ are logic gates.

• v1, v2 ∈ V ∪ {nil} are the first and second input nodes of the gate;

• v ∈ V is the output node, and α ∈ R ∪ {nil}.

The collection T of gates must satisfy the following important property:

For every two gates T = (G, v1, v2, v,α) and T ′ = (G′, v′1, v
′
2, v

′,α′) in T , v &= v′. (1)

Suppose T = (G, v1, v2, v,α) in T . If G = Gζ , then the gate has no input node and v1 =

v2 = nil. If G ∈ {G×ζ , G=, G¬ }, then v1 ∈ V and v2 = nil. If G ∈ {G+, G−, G<, G∧, G∨ },

then v1, v2 ∈ V and v1 &= v2. Parameter α is only used in Gζ and G×ζ gates. If G = Gζ , then

α ∈ [0, 1/|V |]. If G = G×ζ , then α ∈ [0, 1]. For other types of gates, α = nil.

22

www.manaraa.com

G = Gζ : P[T, ε] =
[

x[v] = α ± ε
]

G = G×ζ : P[T, ε] =
[

x[v] = min
(

αx[v1], 1/K
)

± ε
]

G = G= : P[T, ε] =
[

x[v] = min
(

x[v1], 1/K
)

± ε
]

G = G+ : P[T, ε] =
[

x[v] = min
(

x[v1] + x[v2], 1/K
)

± ε
]

G = G− : P[T, ε] =
[

min
(

x[v1] − x[v2], 1/K
)

− ε ≤ x[v] ≤ max
(

x[v1] − x[v2], 0
)

+ ε
]

G = G< : P[T, ε] =
[

x[v] = ε
B 1 if x[v1] < x[v2] − ε; x[v] = ε

B 0 if x[v1] > x[v2] + ε
]

G = G∨ : P[T, ε] =

[

x[v] = ε
B 1 if x[v1] = ε

B 1 or x[v2] = ε
B 1

x[v] = ε
B 0 if x[v1] = ε

B 0 and x[v2] = ε
B 0

]

G = G∧ : P[T, ε] =

[

x[v] = ε
B 0 if x[v1] = ε

B 0 or x[v2] = ε
B 0

x[v] = ε
B 1 if x[v1] = ε

B 1 and x[v2] = ε
B 1

]

G = G¬ : P[T, ε] =
[

x[v] = ε
B 0 if x[v1] = ε

B 1; x[v] = ε
B 1 if x[v1] = ε

B 0
]

Figure 2: Constraints P[T, ε], where T = (G, v1, v2, v,α) and K = |V |

The input size of a generalized circuit S = (V,T) is the sum of |V | and the total number of

bits needed to describe the gates T ∈ T (the type, the vertices v1, v2, v, and the parameter α

of T). As an important point which will become clear later, we make the following remark: the

input size of the generalized circuits S that we will construct is upper-bounded by poly(|V |).

In addition to its expanded list of gate types, the generalized circuit differs crucially from

the standard circuit in that it does not require the circuit to be acyclic. In other words, in a

generalized circuit, the directed graph defined by connecting input nodes of all gates to their

output counterparts may have cycles. We shall show later that the presence of cycles is necessary

and sufficient to express fixed point computations with generalized circuits.

Semantically, we associate every node v ∈ V with a real variable x[v]. Each gate T ∈ T

requires that the variables of its input and output nodes satisfy certain constraints, either logical

or arithmetic, depending on the type of the gate (see Figure 2 for the details of the constraints).

The notation = ε
B will be defined shortly. A generalized circuit defines a set of constraints, which

may be regarded a mathematical program over the set of variables {x[v] | v ∈ V }.

Definition 5.6. Suppose S = (V,T) is a generalized circuit and K = |V |. For every ε ≥ 0, an

ε-approximate solution to S is an assignment to the variables {x[v] | v ∈ V } such that

• the values of x satisfy the constraint

P[ε] ≡
[

0 ≤ x[v] ≤ 1/K + ε,∀ v ∈ V
]

; and

23

www.manaraa.com

• for each gate T = (G, v1, v2, v,α) ∈ T , the values of x[v1], x[v2] and x[v] satisfy the con-

straint P[T, ε], defined in Figure 2.

The notation = ε
B in Figure 2 is defined as follows. For an assignment to variables x[v], we say

the value of x[v] represents boolean 1 with precision ε, denoted by x[v] = ε
B 1, if 1/K − ε ≤ x[v] ≤

1/K + ε; it represents boolean 0 with precision ε, denoted by x[v] = ε
B 0, if 0 ≤ x[v] ≤ ε. One

can see that the logic constraints implemented by the three logic gates G∧, G∨, G¬ are defined

similarly to the classical ones.

From the reduction in Section 7, we can prove the following theorem. A proof can be found

in Appendix B.

Theorem 5.7. For any constant c ≥ 3, every generalized circuit S = (V,T) has a 1/|V |c-

approximate solution.

For any positive constant c ≥ 3, we let Polyc-Gcircuit denote the problem of finding a

K−c-approximate solution of a given generalized circuit with K nodes.

6 Main Results and Proof Outline

As the main technical result of the paper, we prove the following theorem:

Theorem 6.1 (Main). For any constant c > 0, Polyc-Bimatrix is PPAD-complete.

This theorem immediately implies the following statement about the complexity of computing

and approximating two-player Nash equilibria.

Theorem 6.2 (Complexity of Bimatrix). Bimatrix is PPAD-complete. Further, it does not

have a fully-polynomial-time approximation scheme, unless PPAD is contained in P.

By Proposition 3.1, Bimatrix does not have a fully polynomial-time approximation scheme

for finding a relatively-approximate Nash equilibrium.

Setting ε = 1/poly(n), by Theorem 6.1 and Lemma 4.2, we obtain the following theorem on

the smoothed complexity of two-player Nash equilibria:

Theorem 6.3 (Smoothed Complexity of Bimatrix). Bimatrix is not in smoothed polynomial

time, under uniform or Gaussian perturbations, unless PPAD is contained in RP.

Corollary 6.4 (Smoothed Complexity of Lemke-Howson). If PPAD is not contained in RP,

then the smoothed complexity of the Lemke-Howson algorithm is not polynomial.

By Proposition 3.3, we obtain the following corollary from Theorem 6.1 about the complexity

of Bit-Bimatrix.

Corollary 6.5 (Bit-Bimatrix). For any c > 0, (1 + c) log n-Bit-Bimatrix is PPAD-hard.

To prove Theorem 6.1, we start with the discrete fixed point problem Brouwerf1 (recall that

f1(n) = 3 for all n). In Section 9, we will prove the following theorem:

24

www.manaraa.com

Theorem 6.6 (High-Dimensional Discrete Fixed Points). For every well-behaved function f ,

search problem Brouwerf is PPAD-complete.

As f1 is a well-behaved function, Theorem 6.6 implies that Brouwerf1 is PPAD-complete.

We then apply the following three lemmas to reduce Brouwerf1 to Polyc-Bimatrix:

Lemma 6.7 (FPC to Gcircuit). Brouwerf1 is polynomial-time reducible to Poly3-Gcircuit.

Lemma 6.8 (Gcircuit to Bimatrix). Poly3-Gcircuit is polynomial-time reducible to Poly12-

Bimatrix.

Lemma 6.9 (Padding Bimatrix Games). If Polyc-Bimatrix is PPAD-complete for some con-

stant c > 0, then Polyc′-Bimatrix is PPAD-complete for every constant c′ > 0.

We will prove Lemma 6.7 and Lemma 6.8, respectively, in Section 8 and Section 7. A proof

of Lemma 6.9 can be found in Appendix C.

7 Simulating Generalized Circuits with Nash Equilibria

In this section, we reduce Poly3-Gcircuit to Poly12-Bimatrix and prove Lemma 6.8. Since

every two-player game has a Nash equilibrium, this reduction also implies that every generalized

circuit with K nodes has a 1/K3-approximate solution.

In the construction, we use the game of matching pennies, initially introduced in Step 4 of the

DGP framework, to enforce the players to play the strategies (almost) uniformly, but efficiently

in the number of players by removing the multiplication gate and replacing it by multiplication

with a constant. A set of gadgets are used to simulate the nine types of gates, inspired by the

gadget designs for graphical games developed in [33, 21].

7.1 Outline of the Reduction

Suppose S = (V,T) is a generalized circuit. Let K = |V | and N = 2K. Let C be a bijection from

V to {1, 3, ..., 2K − 3, 2K − 1}. From every vector x ∈ RN , we define two maps x, xC : V → R:

For every node v ∈ V , if C(v) = 2k − 1 set x[v] = x2k−1 and xC [v] = x2k−1 + x2k.

In the reduction, we build an N × N game GS = (AS ,BS) from S. The construction of GS

takes polynomial time and ensures the following properties for ε = 1/K3 = 8/N3:

• Property A1: |aSi,j |, |b
S
i,j | ≤ N3, for all i, j : 1 ≤ i, j ≤ N and

• Property A2: for every ε-well-supported Nash equilibrium (x,y) of game GS , x is an

ε-approximate solution to S.

Then, we normalize GS to obtain GS = (AS ,BS) by setting

aS i,j =
aSi,j + N3

2N3
and bS i,j =

bSi,j + N3

2N3
, for all i, j : 1 ≤ i, j ≤ N.

25

www.manaraa.com

L[T] and R[T], where gate T = (G, v1, v2, v,α)

Set L[T] = (Li,j) = R[T] = (Ri,j) = 0, k = C(v), k1 = C(v1) and k2 = C(v2)

Gζ : L2k−1,2k = L2k,2k−1 = R2k−1,2k−1 = 1, Ri,2k = α,∀ i : 1 ≤ i ≤ 2K.

G×ζ : L2k−1,2k−1 = L2k,2k = R2k−1,2k = 1, R2k1−1,2k−1 = α.

G= : L2k−1,2k−1 = L2k,2k = R2k1−1,2k−1 = R2k−1,2k = 1.

G+ : L2k−1,2k−1 = L2k,2k = R2k1−1,2k−1 = R2k2−1,2k−1 = R2k−1,2k = 1.

G− : L2k−1,2k−1 = L2k,2k = R2k1−1,2k−1 = R2k2−1,2k = R2k−1,2k = 1.

G< : L2k−1,2k = L2k,2k−1 = R2k1−1,2k−1 = R2k2−1,2k = 1.

G∨ : L2k−1,2k−1 = L2k,2k = R2k1−1,2k−1 = R2k2−1,2k−1 = 1, Ri,2k = 1/(2K),∀ i : 1 ≤ i ≤ 2K.

G∧ : L2k−1,2k−1 = L2k,2k = R2k1−1,2k−1 = R2k2−1,2k−1 = 1, Ri,2k = 3/(2K),∀ i : 1 ≤ i ≤ 2K.

G¬ : L2k−1,2k = L2k,2k−1 = R2k1−1,2k−1 = R2k1,2k = 1.

Figure 3: Matrices L[T] and R[T]

By Lemma 3.2, from every 2/N12-approximate Nash equilibrium of GS , we can compute a 4/N6-

well-supported Nash equilibrium of GS in polynomial time. Since 4/N6 = ε/(2N3), this is also

an ε-well-supported Nash equilibrium of GS . By Property A2, we can thus compute an ε-

approximate solution to S, as desired.

In the remainder of this section, we assume ε = 1/K3.

7.2 Construction of Game GS

To construct GS , we transform a prototype game G∗= (A∗,B∗), an N × N zero-sum game to be

defined in Section 7.3, by adding |T | carefully designed “gadget” games: For each gate T ∈ T ,

we define a pair of N × N matrices (L[T],R[T]), according to Figure 3. Then, we set

GS = (AS ,BS), where AS = A∗ +
∑

T∈T

L[T] and BS = B∗ +
∑

T∈T

R[T]. (2)

For each gate T ∈ T , L[T] and R[T] defined in Figure 3 satisfy the following property.

Property 1. Let T = (G, v1, v2, v,α), L[T] = (Li,j) and R[T] = (Ri,j). Suppose C(v) = 2k − 1.

Then,

i &∈ {2k, 2k − 1} ⇒ Li,j = 0, ∀ j ∈ [2K];

j &∈ {2k, 2k − 1} ⇒ Ri,j = 0, ∀ i ∈ [2K];

i ∈ {2k, 2k − 1} ⇒ 0 ≤ Li,j ≤ 1, ∀ j ∈ [2K];

j ∈ {2k, 2k − 1} ⇒ 0 ≤ Ri,j ≤ 1, ∀ i ∈ [2K].

26

www.manaraa.com

7.3 The Prototype Game and Its Properties

The prototype game G∗ = (A∗,B∗) is the bimatrix game called Generalized Matching Pennies

with parameter M = 2K3. It was also used in [33, 21] for reducing degree-3 graphical games to

four-player games. In G∗, A∗ is an N × N matrix:

A∗ =

M M 0 0 · · · 0 0

M M 0 0 · · · 0 0

0 0 M M · · · 0 0

0 0 M M · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · M M

0 0 0 0 · · · M M

,

and B∗ = −A∗. As one can see, A∗ is a K ×K block-diagonal matrix where each diagonal block

is a 2 × 2 matrix of all M ’s. All games we will consider below belong to the following class:

Definition 7.1 (Class L). A bimatrix game (A,B) is a member of L if the entries in A − A∗

and B− B∗ are in [0, 1].

Note that every Nash equilibrium (x,y) of G∗ enjoys the following property: For all v ∈ V ,

xC [v] = yC [v] = 1/K. We first prove an extension of this property for bimatrix games in L.

Recall ε = 1/K3.

Lemma 7.2 (Nearly Uniform Capacities). For every bimatrix game (A,B) ∈ L, if (x,y) is a

1-well-supported Nash equilibrium of (A,B), then

1/K − 1/K3 ≤ xC [v], yC [v] ≤ 1/K + 1/K3, for all v ∈ V.

Proof. Recall that 〈a|b〉 denotes the inner product of two vectors a and b of the same length.

By the definition of class L, for each k, the 2k − 1st and 2kth entries of rows a2k−1 and a2k in A

are in [M,M + 1] and all other entries in these two rows are in [0, 1]. Thus, for any probability

vector y ∈ PN and for each node v ∈ V , supposing C(v) = 2k − 1, we have

MyC [v] ≤ 〈a2k−1|y〉 , 〈a2k|y〉 ≤ MyC [v] + 1. (3)

Similarly, the (2l − 1)th and 2lth entries of columns b2l−1 and b2l in B are in [−M,−M + 1] and

all other entries in these two columns are in [0, 1]. Thus, for any probability vector x ∈ PN and

for each node v ∈ V , supposing C(v) = 2l − 1, we have

−MxC [v] ≤ 〈b2l−1|x〉 , 〈b2l|x〉 ≤ −MxC [v] + 1. (4)

Now, suppose (x,y) is a t-well-supported Nash equilibrium of (A,B) for t ≤ 1. We first prove

that for each node v ∈ V , if yC [v] = 0 then xC [v] = 0. Note that yC [v] = 0 implies that there

27

www.manaraa.com

exists v′ ∈ V with yC [v′] > 1/K. Suppose C(v) = 2l − 1 and C(v′) = 2k − 1. By Inequality (3),

〈a2k|y〉 − max
(

〈a2l|y〉 , 〈a2l−1|y〉
)

≥ MyC [v′] −
(

MyC [v] + 1
)

≥ M/K − 1 > 1

In other words, the payoff of the first player when choosing the 2kth row is more than 1 plus the

payoff when choosing the 2lth or the (2l − 1)th row. Because (x,y) is a t-well-supported Nash

equilibrium with t ≤ 1, we have xC [v] = 0.

Next, we prove |xC [v] − 1/K | < 1/K3 for all v ∈ V . To derive a contradiction, we assume

that this statement is not true. Then, there exist v, v′ ∈ V such that xC [v] − xC [v′] > 1/K3.

Suppose C(v) = 2l − 1 and C(v′) = 2k − 1. By Inequality (4),

〈b2k|x〉 − max
(

〈b2l|x〉 , 〈b2l−1|x〉
)

≥ −MxC [v′] −
(

− MxC [v] + 1
)

> 1,

since M = 2K3. This implies yC [v] = 0, which as shown above implies xC [v] = 0, contradicting

our assumption that xC [v] > xC [v′] + 1/K3 > 0.

We can similarly show |yC [v] − 1/K | < 1/K3 for all v ∈ V , and the lemma follows.

7.4 Correctness of the Reduction

We now prove that, for every ε-well-supported equilibrium (x,y) of GS , x is an ε-approximate

solution to S = (V,T). It suffices to show, as we do in the next two lemmas, that x satisfies the

following collection of 1 + |T | constraints.

{

P[ε], and P[T, ε], T ∈ T
}

.

Lemma 7.3 (Constraint P[ε]). Bimatrix game GS is in L, and for every ε-well-supported Nash

equilibrium (x,y) of GS , x satisfies constraint P[ε] = [0 ≤ x[v] ≤ 1/K + ε,∀ v ∈ V].

Proof. We only need to prove that GS is in L. The second statement of the lemma then follows

directly from Lemma 7.2.

Let GS = (AS ,BS), AS = (AS
i,j), BS = (BS

i,j), A∗ = (A∗
i,j) and B∗ = (B∗

i,j). By Eq.(2), we

have

AS
i,j − A∗

i,j =
∑

T∈T

Li,j[T] and BS
i,j − B∗

i,j =
∑

T∈T

Ri,j[T]

for all i, j : 1 ≤ i, j ≤ 2K. Here we use Li,j[T] and Ri,j [T] to denote the (i, j)th entry of L[T] and

R[T], respectively.

Consider a pair i, j : 1 ≤ i, j ≤ 2K. By Property 1, Li,j[T] is nonzero only when the output

node (or the fourth component) v of T satisfies C(v) = 2k−1 and i ∈ {2k, 2k−1}. It then follows

from the definition of generalized circuits (see (1): gates in T have distinct output nodes) that

there is at most one T ∈ T such that Li,j[T] &= 0. By Property 1, this nonzero Li,j[T] is between

0 and 1. As a result, 0 ≤ AS
i,j − A∗

i,j ≤ 1. It can be proved similarly that 0 ≤ BS
i,j − B∗

i,j ≤ 1 for

all i, j. Therefore, GS is in L and the lemma is proven.

28

www.manaraa.com

Lemma 7.4 (Constraints P [T, ε]). Let (x,y) be an ε-well-supported Nash equilibrium of GS .

Then, for each gate T ∈ T , x satisfies constraint P[T, ε].

Proof. Recall P[T, ε] is a constraint defined in Figure 2. By Lemma 7.3, x and y satisfy

1/K − ε ≤ xC [v], yC [v] ≤ 1/K + ε, for all v ∈ V.

Let T = (G, v1, v2, v,α) be a gate in T . Suppose C(v) = 2k − 1. Let a∗
i and li denote the ith

row vectors of A∗ and L[T], respectively; let b∗
j and rj denote the jth column vectors of B∗ and

R[T], respectively.

From Property 1, L[T] and R[T] are the only two gadget matrices that modify the entries in

rows a∗
2k−1,a

∗
2k or columns b∗

2k−1, b∗
2k in the transformation from the prototype G∗ to GS . Thus,

aS
2k−1 = a∗

2k−1 + l2k−1, aS
2k = a∗

2k + l2k; and (5)

bS
2k−1 = b∗

2k−1 + r2k−1, bS
2k = b∗

2k + r2k. (6)

Now, we prove x satisfies constraint P[T, ε]. Here we only consider the case when G = G+. In

this case, we need to prove x[v] = min(x[v1] +x[v2], 1/K)± ε. Proofs for other types of gates are

similar and can be found in Appendix D.

Since a∗
2k−1 = a∗

2k and b∗
2k−1 = b∗

2k, from (5), (6) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] + x[v2] − x[v], and (7)
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

= y[v] −
(

yC [v] − y[v]
)

. (8)

In a proof by contradiction, we consider two cases. First, we assume x[v] > min(x[v1] +

x[v2], 1/K) + ε. Since x[v] ≤ 1/K + ε, the assumption would imply x[v] > x[v1] + x[v2] + ε.

By Equation (7) and the definition of ε-well-supported Nash equilibria, we have y[v] = y2k−1 = 0.

On the other hand, since yC [v] = 1/K ± ε 6 ε, by Equation (8), we have x[v] = x2k−1 = 0,

contradicting our assumption that x[v] > x[v1] + x[v2] + ε > 0.

Next, we assume x[v] < min(x[v1] + x[v2], 1/K) − ε ≤ x[v1] + x[v2] − ε. Then, Equation (7)

implies y[v] = yC [v]. By Equation (8), we have x[v] = xC [v] and thus, x[v] ≥ 1/K − ε, which

contradicts our assumption that x[v] < min(x[v1] + x[v2], 1/K) − ε ≤ 1/K − ε.

We have now completed the proof of Lemma 6.8.

8 Computing Fixed Points with Generalized Circuits

In this section, we show that fixed points can be modeled by generalized circuits. In particular, we

reduce the search for a panchromatic simplex in an instance of Brouwerf1 (recall that f1(n) = 3)

to Poly3-Gcircuit, the computation of a 1/K3-approximate solution to a generalized circuit

with K nodes. In this section, we will simply refer to Brouwerf1 as Brouwer.

29

www.manaraa.com

The reduction follows Step 3.1 of the DGP framework (see Section 2.3), except that the

starting hard problem 3-Dimensional Brouwer is replaced by Brouwer and we need to

develop a new sampling method (see Section 8.1) to overcome the curse of dimensionality.

Suppose U = (C, 03n) is an input instance of Brouwer which colors the hypergrid Bn =

{0, 1, ..., 7}n with colors from {1, ..., n, n + 1}. Let m be the smallest integer such that 2m ≥

Size [C] > n and K = 26m. As above, Size [C] denotes the number of gates plus the number of

input and output variables in the boolean circuit C. Please note that m = O(log(Size [C])) and

hence, 2Θ(m) is polynomial in the input size of U .

We will construct a generalized circuit SU = (V,T U) with |V | = K in polynomial time. Our

construction ensures that,

• Property R: From every (1/K3)-approximate solution to SU , we can compute a panchro-

matic simplex P of circuit C in polynomial time.

Lemma 6.7 then follows immediately. In the rest of the section, we assume ε = 1/K3.

8.1 Overcoming the Curse of Dimensionality

In Step 3.1 of the DGP framework, they developed a beautiful sampling and averaging technique to

characterize the discrete fixed points (that is, panchromatic cubes) of 3-Dimensional Brouwer.

This lemma provides a computationally efficient way to express the conditions of discrete fixed

points.

In this subsection, we first briefly describe their sampling lemma, and explain why it is no

longer computationally efficient in high dimensions. Then, we overcome the curse of dimensional-

ity with a new sampling method for characterizing the high-dimensional fixed points of Brouwer

(Lemma 8.2). In the rest of the section, we will translate the conditions of discrete fixed points,

as expressed in this new lemma, into the language of generalized circuits, and build SU from U .

Suppose C is a boolean circuit that generates a valid 4-color assignment ColorC from {0, ...,

2n − 1}3 to {1, 2, 3, 4}. Let S = {pt : t ∈ Z3 and |ti| ≤ 20 for all i ∈ [3]} ⊂ R3
+ (here we use R+

to denote the set of non-negative real numbers) be a 41× 41 × 41 grid such that

pt = p0 +
3

∑

i=1

ti · (α ei), for all t,

where α is a constant much smaller than 1. The points in S are called sampling points, which

sample ColorC in the following way: For each pt ∈ S, we let qt denote the point in {0, ..., 2n −1}3

such that qt
i = max{j | j ∈ {0, ..., 2n − 1} and j ≤ pt

i }, for all i ∈ [3]; Then we assign a vector

rt ∈ R3 to each point pt according to the color of qt in ColorC : If ColorC(qt) = i ∈ {1, 2, 3},

then rt = ei; Otherwise, rt = (−1,−1,−1). The lemma says that if ‖
∑

pt∈S rt‖∞ is small, then

there must exist a panchromatic cube around S.

However, this lemma fails to provide a computationally efficient way to characterize high-

dimensional fixed points, because the number of points in the sampling grid is exponential (41n)

in n dimensions, which is not expressible by a polynomial-size generalized circuit. We now present

30

www.manaraa.com

a new lemma with an efficient sampling structure with only a polynomial number of sampling

points. We start with some notations.

For a ∈ R+, let π(a) = max{ i | i ∈ {0, 1, ..., 7} and i ≤ a }. For any p ∈ Rn
+, let q = π(p) be

the integer point in Bn = {0, 1, ..., 7}n with qi = π(pi).

For 1 ≤ i ≤ n, let ei denote the unit vector in Rn whose ith entry is equal to 1 and other

entries are 0. Let zi = ei/K2 ∈ Rn for all 1 ≤ i ≤ n, and zn+1 = −
∑

1≤i≤n ei/K2. We use En

to denote the set of these n + 1 vectors: En = {z1, z2, ..., zn, zn+1 }.

For every point p ∈ Rn
+, we assign a vector in En according to the color of point π(p) ∈ Bn

in ColorC : Let ξ be a map from Rn
+ to En, where

ξ(p) = zColorC [π(p)], for all p ∈ R
n
+.

Definition 8.1 (Well-Positioned Points). A real number a ∈ R+ is poorly-positioned if there is

an integer t ∈ {0, 1, ..., 7} such that |a − t | ≤ 80Kε = 80/K2. A point p ∈ Rn
+ is well-positioned

if none of its components is poorly-positioned, otherwise, it is poorly-positioned.

Let S = {p1,p2, ...,p|S| } be a set of points in Rn
+. We define

IP(S) =
{

k
∣

∣

∣ pk is poorly-positioned
}

and IW(S) =
{

k
∣

∣

∣ pk is well-positioned
}

.

The subscripts “P” and “W” stand for “poorly-positioned” and “well-positioned”, respectively.

Lemma 8.2 (Key Geometry: Equiangle Averaging). Suppose U = (C, 03n) is an instance of

Brouwer. Let S = {pi : 1 ≤ i ≤ n3} be n3 points in Rn
+ satisfying

pi = p1 + (i − 1)
n

∑

j=1

ej/K, for all i : 2 ≤ i ≤ n3. (9)

If there is a vector rk with ‖rk‖∞ ≤ 1/K2 for each k in IP(S), such that,

∥

∥

∥

∑

k∈IW(S) ξ(pk) +
∑

k∈IP(S) r
k
∥

∥

∥

∞
≤ ε,

(In other words, the vector assigned to each well-positioned point pk ∈ S is exactly ξ(pk), but the

vector assigned to a poorly-positioned point pk ∈ S could be an arbitrary rk with ‖rk‖∞ ≤ 1/K2)

then Q = {π(pk), k ∈ IW(S)} is a panchromatic simplex of C.

Proof. We first prove that set Q′ = {qk = π(pk), 1 ≤ k ≤ n3} is accommodated, and satisfies

|Q′ | ≤ n + 1. As sequence {pk}1≤k≤n3 is strictly increasing, {qk}1≤k≤n3 is non-decreasing. Since

n3/K 7 1, there exists at most one ki for each i ∈ [n], such that qki
i = qki−1

i + 1, which implies

that Q′ is accommodated. Since {qk} is non-decreasing, |Q′ | ≤ n + 1. Because Q ⊂ Q′, Q is also

accommodated and |Q| ≤ n + 1.

Next, we give an upper bound for |IP(S)|. Because 1/K2 7 1/K 7 1, there is at most one

ki for each i, such that pki
i is poorly-positioned. Since every poorly-positioned point has at least

one poorly-positioned component, |IP(S)| ≤ n and |IW(S)| ≥ n3 − n.

31

www.manaraa.com

Let Wi denote the number of points in {qk : k ∈ IW(S)} that are colored i by circuit C. To

prove Q is a panchromatic simplex, it suffices to show that Wi > 0 for all i ∈ [n + 1].

Let rG =
∑

k∈IW(S) ξ(pk) and rB =
∑

k∈IP(S) r
k. Since |IP(S)| ≤ n and ‖rk ‖∞ ≤ 1/K2,

‖rB ‖∞ ≤ n/K2, and

‖rG ‖∞ ≤ ‖rB ‖∞ + ε ≤ n/K2 + ε. (10)

Assume for the sake of contradiction that one of Wi is zero:

• If Wn+1 = 0, letting Wi∗ = max1≤i≤n Wi, then Wi∗ ≥ n2 − 1, as |IW(S)| ≥ n3 − n. But

rG
i∗ ≥ (n2 − 1)/K2 6 n/K2 + ε, which contradicts (10) above, since ε = 1/K3.

• If Wt = 0 for t ∈ [n], then we can assert Wn+1 ≤ n2/2, for otherwise, |rG
t | > n2/(2K2) 6

n/K2 + ε, contradicting (10). Suppose Wi∗ = max1≤i≤n+1 Wi. Then, Wi∗ ≥ n2 − 1 and

i∗ &= n + 1. So rG
i∗ ≥ (n2 − 1 − n2/2)/K2 6 n/K2 + ε, contradicting (10).

As a result, Wi > 0 for all i ∈ [n + 1], and we have completed the proof of the lemma.

8.2 Construction of the Generalized Circuit SU

We now show how to perform the sampling operations in Lemma 8.2 using a generalized circuit.

The construction of SU is almost the same as Step 3.1 of the DGP framework, except that we

make critical use of the new sampling lemma. Given an input U = (C, 03n) of Brouwer, our

objective is to design a generalized circuit SU = (V,T U) with |V | = K, such that, from any

ε-approximate solution to SU , one can find a panchromatic simplex of C in polynomial time.

Recall that ε = 1/K3.

The construction of SU goes as follows. There are n4 distinguished nodes in SU . We first

insert appropriate gates to connect these nodes, so that in any ε-approximate solution, the values

of these nodes encode a set S of n3 points p1, ...,pn3
∈ Rn

+ that (approximately) satisfy Eq.(9).

Starting from these n4 nodes, we insert a number of gates to simulate the π function, the boolean

circuit C, and finally, the map ξ for each pi. This means for each 1 ≤ i ≤ n3, there are n nodes

in SU (indeed, we use 2n nodes in the construction) such that in any ε-approximate solution to

SU , the values of these n nodes are very close to ξ(pi) (However, as we shall see later, this is true

only when pi is well-positioned). Then, following Lemma 8.2, we compute the sum of these ξ(pi)

vectors. Finally, more gates are inserted (and cycles are formed in the underlying directed graph

of SU) to enforce that in every ε-approximate solution, the sum of ξ(pi) is very close to zero.

Now suppose we are given an ε-approximate solution to SU . We can extract the n3 points

pi encoded by the values of the n4 nodes, and compute the set Q (as defined in Lemma 8.2)

efficiently. By similar (but more complicated) arguments used in proving Lemma 8.2, we prove

in Section 8.3 that Q must be a panchromatic simplex of ColorC , and complete the reduction.

Let us define some notations that will be useful. Suppose S = (V,T) is a generalized circuit

with |V | = K. A node v ∈ V is said to be unused in S if none of the gates T ∈ T uses v as

its output node. Now, suppose T &∈ T is a gate such that the output node of T is unused in S.

32

www.manaraa.com

ExtractBits(S, v, v1, v2, v3)

1: pick four unused nodes u1, u2, u3, u4 ∈ V

2: Insert(S, (G=, v, nil, u1, nil))

3: for j from 1 to 3 do

4: pick two unused nodes wj1, wj2 ∈ V

5: Insert(S, (Gζ , nil, nil, wj1, 2−(6m+j))), Insert(S, (G<, wj1, uj , vj , nil))

6: Insert(S, (G×ζ , vj , nil, wj2, 2−j)), Insert(S, (G−, uj , wj2, uj+1, nil))

Figure 4: Function ExtractBits

We use Insert(S, T) to denote the insertion of T into S. After calling Insert(S, T), S becomes

(V,T ∪ {T}).

To encode n3 points in Rn
+, let {vk

i }1≤k≤n3,1≤i≤n be n4 distinguished nodes in V . We start

with SU = (V, ∅) and insert a number of gates into it so that, in any ε-approximate solution x,

the values of these nodes encode n3 points S = {pk : 1 ≤ k ≤ n3} that approximately satisfy all

the conditions of Lemma 8.2. In the encoding, we represent pk
i as pk

i = 8Kx[vk
i] for all k, i. Recall

that x[vk
i] is the value of node vk

i in x.

We define two functions ExtractBits and ColoringSimulation. They are the building

blocks in the construction. ExtractBits implements the π function, and is given in Figure 4.

It has the following property (recall the = ε
B notation: x[v] = ε

B 1, if 1/K − ε ≤ x[v] ≤ 1/K + ε;

and x[v] = ε
B 0, if 0 ≤ x[v] ≤ ε):

Lemma 8.3 (Encoding Binary). Suppose S = (V,T) is a generalized circuit with |V | = K. For

each v ∈ V and three unused nodes v1, v2, v3 ∈ V , we use S ′ to denote the generalized circuit

obtained after calling ExtractBits(S, v, v1, v2, v3). Then, in every ε-approximate solution x of

S ′, if a = 8Kx[v] is well-positioned, then x[vi] = ε
B bi for all 1 ≤ i ≤ 3, where b1b2b3 is the binary

representation of integer π(a) ∈ {0, 1, ..., 7}.

Proof. First we consider the case when π(a) = 7. As a ≥ 7 + 80Kε, we have x[v] ≥ 1/(2K) +

1/(4K)+ 1/(8K)+ 10ε. Solving the constraints in Figure 4, we find x[u1] ≥ x[v]− 2ε, x[v1] = ε
B 1

in the first loop, and

x[u2] ≥ x[u1] − x[w12] − ε ≥ x[v] − 2ε − (2−1x[v1] + ε) − ε

≥ x[v] − 2−1(1/K + ε) − 4ε ≥ 1/(4K) + 1/(8K) + 5ε.

Since x[w21] ≤ 1/(4K) + ε and x[u2] − x[w21] > ε, we have x[v2] = ε
B 1 and

x[u3] ≥ x[u2] − x[w22] − ε > 1/(8K) + 2ε.

As a result, x[u3] − x[w31] > ε and x[v3] = ε
B 1.

33

www.manaraa.com

Next, we consider the general case that t < π(a) < t + 1 for some 0 ≤ t ≤ 6. Let b1b2b3 be

the binary representation of t. As a is well-positioned, we have

b1/(2K) + b2/(4K) + b3/(8K) + 10ε ≤ x[v] ≤ b1/(2K) + b2/(4K) + (b3 + 1)/(8K) − 10ε.

With similar arguments, after the first loop one can show that x[v1] = ε
B b1 and

b2/(4K) + b3/(8K) + 5ε ≤ x[u2] ≤ b2/(4K) + (b3 + 1)/(8K) − 5ε.

After the second loop, we have x[v2] = ε
B b2 and

b3/(8K) + 2ε ≤ x[u3] ≤ (b3 + 1)/(8K) − 2ε.

Thus, x[v3] = ε
B b3.

Next, we introduce ColoringSimulation. Suppose S = (V,T) is a generalized circuit with

|V | = K. Let {vi }i∈[n] be n nodes in V , and {v+
i , v−i }i∈[n] ⊂ V be 2n unused nodes. We use

p ∈ Rn
+ to denote the point encoded by nodes {vi}i∈[n], that is, pi = 8Kx[vi]. Imagine that p is

a point in S = {pk : 1 ≤ i ≤ n3 }. ColoringSimulation(S, {vi}i∈[n] , {v
+
i , v−i }i∈[n]) simulates

circuit C on input π(p), by inserting gates into S as follows:

1. Pick 3n unused nodes {vi,j }i∈[n],j∈[3] in V .

Call ExtractBits(S, vt, vt,1, vt,2, vt,3), for each 1 ≤ t ≤ n;

2. View the values of {vi,j} as the 3n input bits of C.

Insert the corresponding logic gates from {G∨, G∧, G¬} into S to simulate the evaluation

of C, one for each gate in C, and place the 2n output bits in {v+
i , v−i }.

We obtain the following lemma for ColoringSimulation(S, {vi}i∈[n] , {v
+
i , v−i }i∈[n]) as a direct

consequence of Lemma 8.3, and the definitions in Figure 2. Let S ′ be the generalized circuit

obtained after calling the above ColoringSimulation, and x be an ε-approximate solution to

S ′. We let p ∈ Rn
+ denote the point with pi = 8Kx[vi] for all i ∈ [n], and q = π(p). We use

{∆+
i [q],∆−

i [q]}i∈[n] to denote the 2n output bits of C evaluated at q. Then

Lemma 8.4 (Point Coloring). If p is a well-positioned point, then x[v+
i] = ε

B ∆+
i [q] and x[v−i] = ε

B

∆−
i [q] for all i ∈ [n].

Note that the equations (= ε
B) in Lemma 8.4 hold only when p is well-positioned. Also note

that no matter whether p is well-positioned or not, we have 0 ≤ x[v+
i],x[v−i] ≤ 1/K + ε for all

i ∈ [n], according to the definition of approximate solutions.

Finally, we build the promised generalized circuit SU with a four-step construction. We

analyze it in the next subsection. Initially, set SU = (V, ∅) and |V | = K.

Part 1: [Equiangle Sampling Segment]

34

www.manaraa.com

Let {vk
i }1≤k≤n3,1≤i≤n be n4 nodes in V . We insert Gζ gates, with properly chosen parameters,

and G+ gates into SU to ensure that every ε-approximate solution x of SU satisfies

x[vk
i] = min

(

x[v1
i] + (k − 1)/(8K2), 1/K

)

± O(ε), (11)

for all 2 ≤ k ≤ n3 and 1 ≤ i ≤ n.

Part 2: [Point Coloring]

Pick 2n4 unused nodes {vk+
i , vk−

i }i∈[n],k∈[n3] from V . For every k ∈ [n3], we call

ColoringSimulation
(

SU , {vk
i }, {v

k+
i , vk−

i }i∈[n]

)

.

Part 3: [Summing up the Coloring Vectors]

Pick 2n unused nodes {v+
i , v−i }i∈[n] ⊂ V . Insert properly-valued G×ζ gates and G+ gates to

ensure that in the resulting generalized circuit SU each ε-approximate solution x satisfies

x[v+
i] =

∑

1≤k≤n3

(1

K
x[vk+

i]
)

± O(n3ε) and x[v−i] =
∑

1≤k≤n3

(1

K
x[vk−

i]
)

± O(n3ε).

Part 4: [Closing the Loop]

For each i ∈ [n], pick unused nodes v′i, v
′′
i ∈ V and insert the following gates:

Insert
(

SU , (G+, v1
i , v

+
i , v′i, nil)

)

, Insert
(

SU , (G−, v′i, v
−
i , v′′i , nil)

)

,

and Insert
(

SU , (G=, v′′i , nil, v1
i , nil)

)

.

8.3 Analysis of the Reduction

We now prove the correctness of the construction.

Let x be an ε-approximate solution to SU . Let S = {pk,with pk
i = 8Kx[vk

i], 1 ≤ k ≤ n3 } be

the set of n3 points that are extracted from x. Let IW = IW(S) and IP = IP(S).

We note that Q = {π(pk), k ∈ IW } can be computed in polynomial time, and complete the

reduction by showing that Q is a panchromatic simplex of ColorC . The line of the proof is very

similar to the one for Lemma 8.2. First, we use the constraints introduced by the gates in Part

1 to prove the following two lemmas:

Lemma 8.5 (Not Too Many Poorly-Positioned Points). |IP | ≤ n, and hence |IW | ≥ n3 − n.

Proof. For each t ∈ IP, according to the definition of poorly-positioned points, there exists an

integer 1 ≤ l ≤ n such that pt
l is a poorly-positioned number. We will prove that, for every integer

1 ≤ l ≤ n, there exists at most one t ∈ [n3] such that pt
l = 8Kx[vt

l] is poorly-positioned, which

implies |IP | ≤ n immediately.

Assume pt
l and pt′

l are both poorly-positioned, for a pair of integers 1 ≤ t < t′ ≤ n3. Then,

from the definition of poorly-positioned points, there exists a pair of integers 0 ≤ k, k′ ≤ 7,

∣

∣x[vt
l] − k/(8K)

∣

∣ ≤ 10ε and
∣

∣x[vt′
l] − k′/(8K)

∣

∣ ≤ 10ε. (12)

35

www.manaraa.com

Because (12) implies that x[vt
l] < 1/K − ε and x[vt′

l] < 1/K − ε, by Equation (11) of Part 1,

x[vt
l] = x[v1

l] + (t − 1)/(8K2) ± O(ε) and x[vt′
l] = x[v1

l] + (t′ − 1)/(8K2) ± O(ε). (13)

Hence, x[vt
l] < x[vt′

l], k ≤ k′ and

x[vt′
l] − x[vt

l] = (t′ − t)/(8K2) ± O(ε) (14)

Note that when k = k′, Equation (12) implies that x[vt′
l] − x[vt

l] ≤ 20ε, while when k < k′, it

implies that x[vt′
l] − x[vt

l] ≥ (k′ − k)/(8K) − 20ε ≥ 1/(8K) − 20ε. In either case the derived

inequality contradicts (14). Thus, only one of pt
l or pt′

l can be poorly-positioned.

Lemma 8.6 (Accommodated). Q = {π(pk), k ∈ IW} is accommodated and |Q| ≤ n + 1.

Proof. To show Q is accommodated, it suffices to prove the following monotonicity property:

qt
l ≤ qt′

l ≤ qt
l + 1, for all l ∈ [n] and t, t′ ∈ IW such that t < t′. (15)

For the sake of contradiction, we assume that (15) is not true. We need to consider the following

two cases.

First, assume qt
l > qt′

l for some t, t′ ∈ IW with t < t′. Since qt′
l < qt

l ≤ 7, we have pt′
l < 7 and

thus, x[vt′
l] < 7/(8K). As a result, the first component of the min operator in (11) is the smallest

for both t and t′, implying that x[vt
l] < x[vt′

l] and pt
l < pt′

l . This contradicts the assumption that

qt
l > qt′

l .

Otherwise, qt′
l − qt

l ≥ 2 for some t, t′ ∈ IW with t < t′. From the definition of π, we have

pt′
l − pt

l > 1 and thus, x[vt′
l] − x[vt

l] > 1/(8K). But from (11), we have

x[vt′
l] − x[vt

l] ≤ (t′ − t)/(8K2) + O(ε) < n3/(8K2) + O(ε) 7 1/(8K).

As a result, (15) is true.

Next, we prove |Q| ≤ n + 1. Note that (15) implies that there exist integers t1 < t2 < ... <

t|Q| ∈ IW such that qti is strictly dominated by qti+1 , that is, qti &= qti+1 and qti
j ≤ q

ti+1
j for all

j ∈ [n]. On the one hand, for every 1 ≤ l ≤ |Q|− 1, there exists an integer 1 ≤ kl ≤ n such that

q
tl+1

kl
= qtl

kl
+ 1. On the other hand, for every 1 ≤ k ≤ n, (15) implies that there is at most one

1 ≤ l ≤ |Q|− 1 such that q
tl+1

k = qtl
k + 1. Therefore, |Q| ≤ n + 1.

For each t ∈ IW, let ct ∈ {1, 2, ..., n + 1} be the color of point qt = π(pt) assigned by ColorC ,

and for each i ∈ {1, 2, ..., n + 1}, let Wi = |{t ∈ IW | ct = i}|.

The construction in Part 2 and Lemma 8.4 guarantees that:

Lemma 8.7 (Correct Encoding of Colors). For each 1 ≤ k ≤ n3, let rk denote the vector that

satisfies rk
i = x[vk+

i] − x[vk−
i] for all i ∈ [n]. Then for each t ∈ IW, rt = Kzct ± 2ε, and for each

t ∈ IP, ‖rt‖∞ ≤ 1/K + 2ε.

36

www.manaraa.com

Let r denote the vector in Rn such that ri = x[v+
i]−x[v−i] for all i ∈ [n]. From (the constraints

of) the gates inserted in Part 4, we aim to establish ‖r‖∞ < 4ε. However, whether or not this

condition holds depends on the values of x[v1
i]. For example, in the case when x[v1

i] = 0, the

magnitude of x[v−i] could be much larger than that of x[v+
i]. We are able to establish the following

lemma which is sufficient to carry out the correctness proof of the reduction.

Lemma 8.8 (Well-Conditioned Solution). For all i ∈ [n],

1. if x[v1
i] > 4ε, then ri = x[v+

i] − x[v−i] > −4ε; and

2. if x[v1
i] < 1/K − 2n3/K2, then ri = x[v+

i] − x[v−i] < 4ε.

Proof. In order to set up a proof-by-contradiction of the first if-statement, we assume there exists

some i such that x[v1
i] > 4ε and x[v+

i] − x[v−i] ≤ −4ε.

From the condition imposed by the first gate (G+, v1
i , v

+
i , v′i, nil) inserted in Part 4, we have

x[v′i] = min(x[v1
i] + x[v+

i], 1/K) ± ε ≤ x[v1
i] + x[v+

i] + ε ≤ x[v1
i] + x[v−i] − 3ε. (16)

From the condition imposed by the the second gate (G−, v′i, v
−
i , v′′i , nil), we have

x[v′′i] ≤ max(x[v′i] − x[v−i], 0) + ε ≤ max(x[v1
i] − 3ε, 0) + ε = x[v1

i] − 2ε, (17)

where the last equality follows from the assumption that x[v1
i] > 4ε. Since x[v1

i] ≤ 1/K + ε, we

have x[v′′i] ≤ x[v1
i] − 2ε ≤ 1/K − ε < 1/K. So, from the condition imposed by the last gate

(G=, v′′i , nil, v1
i , nil), we have x[v1

i] = min(x[v′′i], 1/K) ± ε = x[v′′i] ± ε, which contradicts (17).

Similarly, to prove the second if-statement, we assume there exists some 1 ≤ i ≤ n such that

x[v1
i] < 1/K − 2n3/K2 and x[v+

i] − x[v−i] ≥ 4ε in order to derive a contradiction.

From Part 3 we can see that x[v+
i] ≤ n3/K2 + O(n3ε). Together with the assumption, we

have x[v1
i] + x[v+

i] ≤ 1/K − n3/K2 + O(n3ε) < 1/K. Thus, from the condition imposed by the

first gate G+, we have

x[v′i] = min(x[v1
i] + x[v+

i], 1/K) ± ε = x[v1
i] + x[v+

i] ± ε ≥ x[v1
i] + x[v−i] + 3ε

and x[v′i] ≤ x[v1
i] +x[v+

i] + ε ≤ 1/K −n3/K2 + O(n3ε) < 1/K. Thus from the condition imposed

by the second gate G−,

x[v′′i] ≥ min(x[v′i] − x[v−i], 1/K) − ε = x[v′i] − x[v−i] − ε ≥ x[v1
i] + 2ε. (18)

We also have x[v′′i] ≤ max(x[v′i] − x[v−i], 0) + ε ≤ x[v′i] + ε < 1/K. Further, the last gate G=

implies that x[v1
i] = min(x[v′′i], 1/K) ± ε = x[v′′i] ± ε, which contradicts (18).

Now, we show that Q is a panchromatic simplex of C. By Lemma 8.6, it suffices to prove

that Wi > 0, for all i ∈ [n + 1].

37

www.manaraa.com

By Part 3 of the construction and Lemma 8.7,

r =
1

K

∑

1≤i≤n3

ri ± O(n3ε) =
1

K

∑

i∈IW

ri +
1

K

∑

i∈IP

ri ± O(n3ε)

=
∑

i∈IW

zci +
1

K

∑

i∈IP

ri ± O(n3ε) =
∑

1≤i≤n+1

Wi z
i +

1

K

∑

i∈IP

ri ± O(n3ε)

= rG + rB ± O(n3ε),

where we define rG =
∑

1≤i≤n+1 Wiz
i and rB =

∑

i∈IP
ri/K. As |IP | ≤ n and ‖ri‖∞ ≤ 1/K + ε

for each i ∈ IP, we have ‖rB ‖∞ = O(n/K2).

Since |IW | ≥ n3 − n, we have
∑

1≤i≤n+1 Wi ≥ n3 − n. The next lemma shows that, if one of

Wi is equal to zero, then ‖rG‖∞ is much greater than ‖rB ‖∞.

Lemma 8.9. If one of Wi is equal to zero, then ‖rG‖∞ ≥ n2/(3K2), and thus ‖r‖∞ > 4ε.

Proof. We divide the proof into two cases. First, assume Wn+1 = 0. Let l ∈ [n] be the integer such

that Wl = max1≤i≤n Wi, then we have Wl > n2−1. Thus, r′l = Wl/K ≥ (n2−1)/K > n2/(3K2).

Otherwise, assume Wt = 0 for some 1 ≤ t ≤ n. We have the following two cases:

• Wn+1 ≥ n2/2: r′t = −Wn+1/K ≤ −n2/(2K2) < −n2/(3K2).

• Wn+1 < n2/2: Let l be the integer such that Wl = max1≤i≤n+1 Wi, then l &= t, n + 1 and

Wl > n2 − 1. Then, r′l = (Wl − Wn+1)/K > (n2/2 − 1)/K2 > n2/(3K2).

Therefore, if Q is not a panchromatic simplex, then one of the Wi’s is equal to zero, and

hence ‖r‖∞ > 4ε. Had Part 4 of our construction guaranteed that ‖r‖∞ ≤ 4ε, we would have

completed the proof. As it is not always the case, we prove the following lemma:

Lemma 8.10 (Well-Conditioned). For all i ∈ [n], 4ε < x[v1
i] < 1/K − 2n3/K2.

By Lemma 8.10 and Lemma 8.8, we have ‖r‖∞ < 4ε. It then follows from Lemma 8.9 that

all the Wi’s are nonzero, and thus, Q is a panchromatic simplex.

Proof of Lemma 8.10. In the proof, we will use the following boundary properties of ColorC : For

each q ∈ Bn (recall Bn = {0, 1, ..., 7}n) and 1 ≤ k &= l ≤ n,

B.1: if qk = 0, then ColorC [q] &= n + 1;

B.2: if qk = 0 and ql > 0, then ColorC [q] &= l;

B.3: if qk = 7, then ColorC [q] &= k; and

B.4: if qk = 7 and ColorC [q] = l &= k, then ql = 0.

38

www.manaraa.com

All these properties follow directly from the definition of valid Brouwer circuits.

First, if there exists an integer k ∈ [n] such that x[v1
k] ≤ 4ε, then qt

k = 0 for all t ∈ IW. By

B.1, Wn+1 = 0. Let l be the integer such that Wl = max1≤i≤n Wi. As
∑n+1

i=1 Wi = |IW | ≥ n3−n,

we have Wl ≥ n2 − 1. So, rl ≥ Wl/K2 − O(n/K2) − O(n3ε) > 4ε. Now consider the following

two cases:

• If x[v1
l] < 1/K − 2n3/K2, then we get a contradiction from Lemma 8.8.

• If x[v1
l] ≥ 1/K − 2n3/K2, then for all t ∈ IW,

pt
l = 8K

(

min
(

x[v1
l] + (t − 1)/(8K2), 1/K

)

± O(ε)
)

> 1

and hence qt
l > 0. By B.2, we have Wl = 0, contradicting the inequality Wl ≥ n2 − 1.

Otherwise, if there exists an integer k ∈ [n] such that x[v1
k] ≥ 1/K − 2n3/K2, then for all

t ∈ IW, we have qt
k = 7. By B.3, Wk = 0. If Wn+1 ≥ n2/2, then

rk ≤ −Wn+1/K
2 + O(n/K2) + O(n3ε) < −4ε,

which, by Lemma 8.8.1, contradicts the assumption that x[v1
k] ≥ 1/K − 2n3/K2 > 4ε. Consider

the remaining case where Wn+1 < n2/2.

Let l be the integer such that Wl = max1≤i≤n+1 Wi. Since Wk = 0, we have Wl ≥ n2 − 1 and

l &= k. As Wn+1 < n2/2, Wl − Wn+1 > n2/2 − 1 and thus,

rl ≥ (Wl − Wn+1)/K
2 − O(n/K2) − O(n3ε) > 4ε.

We now consider the following two cases:

• If x[v1
l] < 1/K − 2n3/K2, then we get a contradiction by Lemma 8.8.2;

• If x[v1
l] ≥ 1/K −2n3/K2, then pt

l > 1 and thus qt
l > 0 for all t ∈ IW. By B.4, we have

Wl = 0 which contradicts the assumption.

9 PPAD-Completeness of Brouwerf

To prove Theorem 6.6, we reduce a two-dimensional instance of Brouwerf2 (recall that f2(n) =

2n/23), that is, a valid 3-coloring of a 2-dimensional grid, to Brouwerf . Since Brouwerf2,

just like its 3-dimensional analog introduced in [21], is known to be PPAD-complete [11], this

reduction implies that Brouwerf is also PPAD-complete.

The basic idea of the reduction is to iteratively embed an instance of Brouwerf2 into a

hypergrid one dimension higher to eventually “fold” or embed this 2-dimensional input instance

into the desired hypergrid. We use the following notion to describe the embedding process. A

triple T = (C, d, r) is a coloring triple if r ∈ Zd with ri ≥ 3 for all 1 ≤ i ≤ d and C is a valid

39

www.manaraa.com

Brouwer-mapping circuit with parameters d and r. Let Size [C] denote the number of gates plus

the number of input and output variables in a circuit C.

The embedding is carried out by a sequence of three polynomial-time transformations: L1(T,

t, u), L2(T, u), and L3(T, t, a, b). They embed a coloring triple T into a larger T ′ (that is, the

volume of the search space of T ′ is greater than the one of T) such that from every panchromatic

simplex of T ′, one can find a panchromatic simplex of T efficiently.

For the sake of clarity, in the context of this section, we rephrase the definition of Brouwerf

as follows: In the original definition, each valid Brouwer-mapping circuit C defines a color as-

signment from the search space to {1, ..., d, d + 1}. In this section, we replace the color d + 1 by

a special color “red”. In other words, if the output bits of C evaluated at p satisfy Case i with

1 ≤ i ≤ d, then ColorC [p] = i; otherwise, the output bits satisfy Case d+1 and ColorC [p] =red.

We first prove a useful property of valid Brouwer-mapping circuits.

Property 2 (Boundary Continuity). Let C be a valid Brouwer-mapping circuit with parameters

d and r. If p ∈ ∂(Ad
r) satisfies 1 ≤ pt ≤ rt − 2 for some t ∈ [d], then ColorC [p] = ColorC [p′],

where p′ = p + et.

Proof. First it is easy to check that p′ ∈ ∂(Ad
r). Second, by the definition, if C is a valid Brouwer-

mapping circuit, then for each p ∈ ∂(Ad
r), ColorC [p] only depends on the set {i |pi = 0}. When

1 ≤ pt ≤ rt − 2, we have {i |pi = 0} = {i |p′i = 0}, and thus, ColorC [p] = ColorC [p′].

9.1 Reductions Among Coloring Triples

Both L1(T, t, u) and L2(T, u) are very simple operations:

• Given a coloring triple T = (C, d, r) and two integers 1 ≤ t ≤ d, u > rt, L1(T, t, u) pads

dimension t to size u, i.e., it builds a new coloring triple T ′ = (C ′, d, r′) with r′t = u and

r′i = ri, for all other i ∈ [d].

• For integer u ≥ 3, L2(T, u) adds a dimension to T by constructing T ′ = (C ′, d + 1, r′) such

that r′ ∈ Zd+1, r′d+1 = u and r′i = ri, for all i ∈ [d].

These two transformations are described in Figure 5 and Figure 6, respectively. We prove their

properties in the following two lemmas.

Lemma 9.1 (L1(T, t, u): Padding a Dimension). Given a coloring triple T = (C, d, r) and two

integers 1 ≤ t ≤ d and u > rt, L1 constructs a new coloring triple T ′ = (C ′, d, r′) that satisfies

the following two conditions:

A. r′t = u, and r′i = ri for all other i ∈ [d]. In addition, there exists a polynomial g1(n) such

that Size [C ′] = Size [C] + O(g1(Size [r′])), and T ′ can be computed in time polynomial in

Size [C ′]. We write T ′ = L1(T, t, u);

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic

simplex P of T in polynomial time.

40

www.manaraa.com

ColorC′ [p] of a point p ∈ Ad
r′ assigned by (C ′, d, r′) = L1(T, t, u)

1: if p ∈ ∂
(

Ad
r′

)

then

2: if there exists i such that pi = 0 then

3: ColorC′ [p] = max{ i
∣

∣ pi = 0}

4: else

5: ColorC′ [p] = red

6: else if pt ≤ rt − 1 then

7: ColorC′ [p] = ColorC [p]

8: else

9: ColorC′ [p] = red

Figure 5: How L1(T, t, u) extends the coloring triple T = (C, d, r)

Proof. We build circuit C ′ according to its color assignment described in Figure 5. It has Size [r′]

input bits, which encode a point p ∈ Ad
r′ . It first checks whether p is on the boundary of Ad

r′ or

not. If p ∈ ∂(Ad
r′), then C ′ outputs its color according to the boundary condition. Otherwise, C ′

checks whether p ∈ Ad
r or not. If p ∈ Ad

r, then C ′ runs C on p and outputs ColorC [p]; Otherwise,

C ′ simply outputs red. Property A immediately follows from this construction.

To show Property B, let P ′ be a panchromatic simplex of T ′, and Kp be the hypercube

containing P ′. We first note that pt < rt − 1, because if pt ≥ rt − 1, Kp would not contain color

t according to the color assignment. We note that ColorC′ [q] = ColorC [q] for all q ∈ Ad
r. Thus

P ′ is also a panchromatic simplex of the coloring triple T .

Lemma 9.2 (L2(T, u): Adding a Dimension). Given a coloring triple T = (C, d, r) and integer

u ≥ 3, L2 constructs a new coloring triple T ′ = (C ′, d + 1, r′) satisfying the following conditions:

A. r′d+1 = u, and r′i = ri for all i ∈ [d]. Moreover, there exists a polynomial g2(n) such that

Size [C ′] = Size [C] + O(g2(Size [r′])). T ′ can be computed in time polynomial in Size [C ′].

We write T ′ = L2(T, u);

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic

simplex P of T in polynomial time.

Proof. For each point q ∈ Ad+1
r′ , we use q̂ to denote the point in Ad

r with q̂i = qi, for all i ∈ [d].

The color assignment of circuit C ′ is given in Figure 6, from which Property A follows.

To prove Property B, we let P ′ ⊂ Kp be a panchromatic simplex of T ′. Note that pd+1 = 0,

for otherwise, Kp does not contain color d + 1. Also note that ColorC′ [q] = d + 1 for every

q ∈ Ad+1
r′ with qd+1 = 0. Thus, for every q ∈ P ′ with ColorC′ [q] &= d + 1, we have qd+1 = 1.

Finally, because ColorC′ [q] = ColorC [q̂] for every q ∈ Ad+1
r′ with qd+1 = 1, set P = { q̂

∣

∣ q ∈

P ′ and ColorC′ [q] &= d + 1} is a panchromatic simplex of T .

41

www.manaraa.com

ColorC′ [p] of a point p ∈ Ad+1
r′ assigned by (C ′, d + 1, r′) = L2(T, u)

1: if p ∈ ∂
(

Ad
r′

)

then

2: if there exists i such that pi = 0 then

3: ColorC′ [p] = max{ i
∣

∣ pi = 0}

4: else

5: ColorC′ [p] = red

6: else if pd+1 = 1 then

7: ColorC′ [p] = ColorC [p̂], where p̂ ∈ Zd satisfies p̂i = pi for all i ∈ [d]

8: else

9: ColorC′ [p] = red

Figure 6: How L2(T, u) extends the coloring triple T = (C, d, r)

Transformation L3(T, t, a, b) is the one that does all the hard work.

Lemma 9.3 (L3(T, t, a, b): Snake Embedding). Given a coloring triple T = (C, d, r) and integer

1 ≤ t ≤ d, if rt = a(2b + 1) + 5 for two integers a, b ≥ 1, then L3 constructs a new coloring triple

T ′ = (C ′, d + 1, r′) that satisfies the following conditions:

A. r′t = a + 5, r′d+1 = 4b + 3, and r′i = ri for all other i ∈ [d]. Moreover, there exists a

polynomial g3(n) such that Size [C ′] = Size [C] + O(g3(Size [r′])) and T ′ can be computed in

time polynomial in Size [C ′]. We write T ′ = L3(T, t, a, b).

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic

simplex P of T in polynomial time.

Proof. Consider the domains Ad
r ⊂ Zd and Ad+1

r′ ⊂ Zd+1 of our coloring triples. We form the

reduction L3(T, t, a, b) in three steps. First, we define a d-dimensional set W ⊂ Ad+1
r′ that is

large enough to contain Ad
r. Second, we define a map ψ from W to Ad

r that (implicitly) specifies

an embedding of Ad
r into W . Finally, we build a circuit C ′ for Ad+1

r′ and show that from each

panchromatic simplex of C ′, we can, in polynomial time, compute a panchromatic simplex of C.

A two dimensional view of W ⊂ Ad+1
r′ is illustrated in Figure 7. We use a snake-pattern to

realize the longer tth dimension of Ad
r in the two-dimensional space defined by the shorter tth and

(d+1)th dimensions of Ad+1
r′ . Formally, W consists of points p ∈ Ad+1

r′ satisfying 1 ≤ pd+1 ≤ 4b+1

and

if pd+1 = 1, then 2 ≤ pt ≤ a + 4;

if pd+1 = 4b + 1, then 0 ≤ pt ≤ a + 2;

if pd+1 = 4(b − i) − 1 where 0 ≤ i ≤ b − 1, then 2 ≤ pt ≤ a + 2;

if pd+1 = 4(b − i) − 3 where 0 ≤ i ≤ b − 2, then 2 ≤ pt ≤ a + 2;

42

www.manaraa.com

4 b + 2

4 b + 1

4 b

0

1

2

1

0 2 a + 4 a + 3 a + 2 e t

e d + 1

Figure 7: The two dimensional view of set W ⊂ Ad+1
r′

if pd+1 = 4(b − i) − 2 where 0 ≤ i ≤ b − 1, then pt = 2;

if pd+1 = 4(b − i) where 0 ≤ i ≤ b − 1, then pt = a + 2.

To build T ′, we embed the coloring triple T into W . The embedding is implicitly given by a

surjective map ψ from W to Ad
r, a map that will play a vital role in the construction and analysis.

For each p ∈ W , we use p[m] to denote the point q in Zd with qt = m and qi = pi for all other

i ∈ [d]. We define ψ(p) according to the following cases:

if pd+1 = 1, then ψ(p) = p[2ab + pt]

if pd+1 = 4b + 1, then ψ(p) = p[pt];

if pd+1 = 4(b − i) − 1 where 0 ≤ i ≤ b − 1, then ψ(p) = p[(2i + 2)a + 4 − pt];

if pd+1 = 4(b − i) − 3 where 0 ≤ i ≤ b − 2, then ψ(p) = p[(2i + 2)a + pt];

if pd+1 = 4(b − i) − 2 where 0 ≤ i ≤ b − 1, then ψ(p) = p[(2i + 2)a + 2];

if pd+1 = 4(b − i) where 0 ≤ i ≤ b − 1, then ψ(p) = p[(2i + 1)a + 2].

We let ψi(p) denote the ith component of ψ(p).

Essentially, we map W bijectively to Ad
r along its tth dimension with exception that when the

snake pattern of W is making a turn, we stop the advance in Ad
r, and continue the advance after

it completes the turn.

The circuit C ′ specifies a color assignment of Ad+1
r′ according to Figure 8. We first prove that

ColorC′ is valid:

Property 3 (Boundary Preserving). The coloring described in Figure 8 is valid.

Proof. It suffices to show that ColorC′ satisfies the boundary condition for all p ∈ W ∩ ∂(Ad+1
r′).

43

www.manaraa.com

ColorC′ [p] of a point p ∈ Ad+1
r′ assigned by (C ′, d + 1, r′) = L3(T, t, a, b)

1: if p ∈ W then

2: ColorC′ [p] = ColorC [ψ(p)]

3: else if p ∈ ∂ (Ad+1
r′) then

4: if there exists i such that pi = 0 then

5: ColorC′ [p] = max{ i
∣

∣ pi = 0}

6: else

7: ColorC′ [p] = red

8: else if pd+1 = 4i where 1 ≤ i ≤ b and 1 ≤ pt ≤ a + 1 then

9: ColorC′ [p] = d + 1

10: else if pd+1 = 4i + 1, 4i + 2 or 4i + 3 where 0 ≤ i ≤ b − 1 and pt = 1 then

11: ColorC′ [p] = d + 1

12: else

13: ColorC′ [p] = red

Figure 8: How L3(T, t, a, b) extends the coloring triple T = (C, d, r)

Let p be a point in W ∩ ∂ (Ad+1
r′). One can show that {i |pi = 0} = {i |ψi(p) = 0}. If there

exists i such that pi = 0, then ColorC′ [p] = ColorC [ψ(p)] = max{i |ψi(p) = 0} = max{i |pi =

0}, since ColorC is valid.

Otherwise, {i |pi = 0} = ∅, and there exists l such that pl = r′l − 1. In this case, we have

{i |ψi(p) = 0} = ∅, and ψl(p) = rl − 1. As a result, ColorC′ [p] = ColorC [ψ(p)] = red, since

ColorC is valid.

By Property 3, we know that C ′ is a valid Brouwer-mapping circuit with parameters d + 1

and r′. Property A follows from the construction in Figure 8, since whether p ∈ W or not can

be decided efficiently.

We now establish Property B of the lemma. The intuition behind the proof is as follows.

In ColorC′ , points to the right of W are colored in red, and points to the left are colored in

d + 1. Every (unit-size) hypercube Kp ⊂ Ad+1
r′ consists of Kp ∩W , whose image ψ(Kp ∩W) is a

(unit-size) hypercube in Ad
r, and either points to the right or left of W . Let P ′ be a panchromatic

simplex of T ′ in Ad+1
r′ , and Kp∗ be the hypercube containing P ′. Since hypercubes to the right

of W do not contain color d + 1, Kp∗ must lie to the left of W . We will show that, except the

point with color d + 1, every point p ∈ P ′

- either belongs to W ∩ Kp∗ ; or

- can be mapped to a point q ∈ W ∩ Kp∗ such that ColorC′ [q] = ColorC′ [p].

Thus from P ′, we can recover d + 1 points in W ∩ Kp∗ with d + 1 distinct colors {1, ..., d, red}.

44

www.manaraa.com

Since ColorC′ [p] = ColorC [ψ(p)] for all p ∈ W , we can apply ψ to get a panchromatic simplex

P of ColorC .

We prove a collection of statements to cover all the possible cases of the given panchromatic

simplex P ′ of T ′. We use the following notation: For each p ∈ Ad+1
r′ , let p[m1,m2] denote the

point q ⊂ Zd+1 such that qt = m1, qd+1 = m2 and qi = pi for all other i ∈ [d].

Statement 1. If p∗t = 0, then p∗d+1 = 4b and furthermore, for every point p ∈ P ′ such that

ColorC′ [p] &= d + 1, ColorC [ψ(p[pt, 4b + 1])] = ColorC′ [p].

Proof. First, note that p∗d+1 &= 4b + 1, for otherwise, Kp∗ does not contain color d + 1. Second,

if p∗d+1 < 4b, then since p∗t = 0, each point q ∈ Kp∗ is colored according one of the conditions

in line 3, 8 or 10 of Figure 8. Let q∗ ∈ Kp∗ be the red point in P ′. Then, q∗ must satisfy the

condition on line 6 and hence there exists l such that q∗l = r′l − 1. By our assumption, p∗t = 0.

Thus, if p∗d+1 < 4b, then l &∈ {t, d + 1}, implying for each q ∈ Kp∗ , ql > 0 (as r′l = rl ≥ 3 and

thus, ql ≥ q∗l − 1 > 0) and ColorC′ [q] &= l. Then, Kp∗ does not contain color l, contradicting the

assumption of the statement. Putting these two cases together, we have p∗d+1 = 4b.

We now prove the second part of the statement. If pd+1 = 4b + 1, then we are done, because

ColorC [ψ(p)] = ColorC′ [p] according to lines 1 and 2 of Figure 8. Let us assume pd+1 = 4b.

Since the statement assumes ColorC′ [p] &= d + 1, p satisfies the condition in line 3 and hence

p ∈ ∂ (Ad+1
r′). By Property 2, we have ColorC′ [p[pt, 4b + 1]] = ColorC′ [p]. Since p[pt, 4b + 1] ∈

W when pt ∈ {0, 1}, we have ColorC [ψ(p[pt, 4b + 1])] = ColorC′ [p[pt, 4b + 1]] = ColorC′ [p],

completing the proof of the statement.

Statement 2. If p∗t = a + 2 or a + 3, then p∗d+1 = 0. In addition, for each point p ∈ P ′ such

that ColorC′ [p] &= d + 1, p ∈ W (and thus, ColorC [ψ(p)] = ColorC′ [p]).

Proof. If p∗d+1 > 0, then Kp∗ does not contain color d + 1. So p∗d+1 = 0. In this case, pd+1 must

be 1, since ColorC′ [q] = d + 1 for all q ∈ Ad+1
r′ with qd+1 = 0. Since pt ∈ {a + 2, a + 3, a + 4}, we

have p ∈ W .

Statement 3. If p∗d+1 = 4b, then 0 ≤ p∗t ≤ a + 1. Moreover, for each point p ∈ P ′ such that

ColorC′ [p] &= d + 1, ColorC [ψ(p[pt, 4b + 1])] = ColorC′ [p].

Proof. If p∗t > a + 1, then Kp∗ does not contain color d + 1. So 0 ≤ p∗t ≤ a + 1. Similar to the

proof of Statement 1, we can prove the second part for the case when 0 ≤ pt ≤ a + 1.

When pt = a + 2, both p and p[pt, 4b + 1] are in W , and we have ψ(p) = ψ(p[pt, 4b + 1]).

Thus, ColorC [ψ(p[pt, 4b + 1])] = ColorC [ψ(p)] = ColorC′ [p].

We can similarly prove the following statements.

Statement 4. If p∗d+1 = 4i+ 1 or 4i+ 2 for some 0 ≤ i ≤ b− 1, then p∗t = 1. Moreover, for each

p ∈ P ′ such that ColorC′ [p] &= d + 1, ColorC [ψ(p[2, pd+1])] = ColorC′ [p].

45

www.manaraa.com

Statement 5. If p∗d+1 = 4i for some 1 ≤ i ≤ b − 1, then 1 ≤ p∗t ≤ a + 1. In addition, for each

p ∈ P ′ such that ColorC′ [p] &= d+1, if 2 ≤ pt ≤ a+1, then ColorC [ψ(p[pt, 4i + 1])] = ColorC′ [p];

if pt = 1, then ColorC [ψ(p[2, 4i + 1])] = ColorC′ [p].

Statement 6. If p∗d+1 = 4i − 1 for some 1 ≤ i ≤ b, then 1 ≤ p∗t ≤ a + 1. Moreover, for each

p ∈ P ′ such that ColorC′ [p] &= d+1, if 2 ≤ pt ≤ a+1, then ColorC [ψ(p[pt, 4i − 1])] = ColorC′ [p];

if pt = 1, then ColorC [ψ(p[2, 4i − 1])] = ColorC′ [p].

Statement 7. If p∗d+1 = 0, then 1 ≤ p∗t ≤ a + 3. In addition, for each point p ∈ P ′ such that

ColorC′ [p] &= d + 1, if 2 ≤ p∗t ≤ a + 3, then p ∈ W (and thus, ColorC [ψ(p)] = ColorC′ [p]); if

p∗t = 1, then ColorC [ψ(p[2, 1])] = ColorC′ [p].

In addition,

Statement 8. p∗d+1 &= 4b + 1.

Proof. If p∗d+1 = 4b + 1 then Kp∗ does not contain color d + 1.

Suppose that P ′ is a panchromatic simplex of T ′, and Kp∗ be the hypercube containing P ′.

Then P ′ and p∗ must satisfy the conditions of one of the statements above. By that statement,

we can transform every point p ∈ P ′, (aside from the one that has color d + 1) back to a point

q in Ad
r to obtain a set P from P ′. Since P is accommodated, it is a panchromatic simplex of C.

Thus, with all the statements above, we specify an efficient algorithm to compute a panchromatic

simplex P of T given a panchromatic simplex P ′ of T ′.

9.2 PPAD-Completeness of Problem Brouwerf

We are now ready to prove the main result of this section.

Proof of Theorem 6.6. We reduce Brouwerf2 to Brouwerf . Since the former is known to be

PPAD-complete [11], the latter is also PPAD-complete. Suppose (C, 02n) is an input instance

of Brouwerf2 (here we assume n is large enough so that 3 ≤ f(8n) ≤ 4n). Let

3 ≤ l = f(8n) ≤ 4n , m =

⌈

8n

l

⌉

≥ 2, and m′ =

⌈

n

l − 2

⌉

.

We need to construct a coloring triple (C ′,m, r′) (which can also be viewed as an input instance

(C ′, 08n) of Brouwerf) where r′ ∈ Zm and r′i = 2l for all i ∈ [m]. Every panchromatic simplex

of C ′ can be used to find a panchromatic simplex of C efficiently.

We first consider the case when l ≥ n. Since m ≥ 2, the hypergrid {0, 1, ..., 2n − 1}2 of C

is contained in Am
r′ . Therefore, we can build (C ′,m, r′) by iteratively applying L1 and L2 to

(C, 2, (2n, 2n)) with appropriate parameters. It follows from Properties A of Lemma 9.1 and 9.2

that (C ′,m, r′) can be built in polynomial time (more exactly, poly(n,Size [C])). On the other

hand, given a panchromatic simplex of C ′, one can use Properties B of Lemma 9.1 and 9.2 to

recover a panchromatic simplex of C efficiently.

46

www.manaraa.com

The Construction of T 3m′−14 from T 1

1: for t from 0 to m′ − 6 do

2: By the inductive hypothesis (19), T 3t+1 = (C3t+1, d3t+1, r3t+1) satisfies

d3t+1 = t + 2, r3t+1
1 = 2(m′−t)(l−2), r3t+1

2 = 2n and r3t+1
i = 2l for all 3 ≤ i ≤ t + 2

3: let u = (2(m′−t−1)(l−2) − 5)(2l−1 − 1) + 5

4: T 3t+2 = L1 (T 3t+1, 1, u)

5: T 3t+3 = L3 (T 3t+2, 1, 2(m′−t−1)(l−2) − 5, 2l−2 − 1)

6: T 3t+4 = L1 (T 3t+3, t + 3, 2l)

Figure 9: The Construction of T 3m′−14 from T 1

In the rest of the proof, we assume l < n. For this case, we iteratively build a sequence of col-

oring triples T = {T 0, T 1, ..., Tw−1, Tw } for some w = O(m), starting with T 0 = (C, 2, (2n, 2n))

and ending with Tw = (Cw,m, rw) where rw ∈ Zm and rw
i = 2l, for all i ∈ [m]. At the tth

iteration, we apply either L1,L2 or L3 with properly chosen parameters to build T t+1 from T t.

We further assume that m′ ≥ 5. The special case when m′ = 2, 3 or 4 can be proved easily

using the procedure in Figure 10.

Below we give details of the construction. In the first step, we call L1(T 0, 1, 2m′(l−2)) to get

T 1 = (C1, 2, (2m′(l−2), 2n)). This step is possible because m′(l − 2) ≥ n. We then invoke the pro-

cedure in Figure 9. We inductively prove that for all 0 ≤ t ≤ m′−5, T 3t+1 = (C3t+1, d3t+1, r3t+1)

satisfies

d3t+1 = t + 2, r3t+1
1 = 2(m′−t)(l−2), r3t+1

2 = 2n and r3t+1
i = 2l for all 3 ≤ i ≤ t + 2. (19)

So in each for-loop, the first component of r decreases by a factor of 2l−2, while the dimension of

the space increases by 1.

The basis when t = 0 is trivial. Assume (19) is true for 0 ≤ t < m′ − 5. We prove it for t + 1.

T 3t+4 is constructed from T 3t+1 in Figure 9. We only need to verify the following inequality:

r3t+1
1 ≤ u =

(

2(m′−t−1)(l−2) − 5
)

(2l−1 − 1) + 5, (20)

since otherwise, the first call to L1 is illegal. (20) follows from the inductive hypothesis (19) that

r3t+1
1 = 2(m′−t)(l−2), and the assumption that t < m′ − 5 and l ≥ 3. By induction, we know (19)

is true for all 0 ≤ t ≤ m′ − 5.

So, after running the for-loop in Figure 9 for (m′−5) times, we get a coloring triple T 3m′−14 =

(C3m′−14, d3m′−14, r3m′−14) that satisfies7

d3m′−14 = m′ − 3 , r3m′−14
1 = 25(l−2) , r3m′−14

2 = 2n and r3m′−14
i = 2l , ∀ i : 3 ≤ i ≤ m′ − 3.

7Here we use the superscripts of C, d, ri to denote the index of the iterative step. It is not an exponent!

47

www.manaraa.com

The Construction of Tw′
from T 3m′−14

1: let t = 0

2: while T 3(m′+t)−14 = (C3(m′+t)−14,m′ + t − 3, r3(m′+t)−14) satisfies r3(m′+t)−14
1 > 2l do

3: let k = 2 (r3(m′+t)−14
1 − 5)/(2l−1 − 1)3 + 5

4: T 3(m′+t)−13 = L1 (T 3(m′+t)−14, 1, (k − 5)(2l−1 − 1) + 5)

5: T 3(m′+t)−12 = L3 (T 3(m′+t)−13, 1, k − 5, 2l−2 − 1)

6: T 3(m′+t)−11 = L1 (T 3(m′+t)−12, m′ + t − 2, 2l), set t = t + 1

7: let w′ = 3(m′ + t) − 13 and Tw′
= L1(T 3(m′+t)−14, 1, 2l)

Figure 10: The Construction of Tw′
from T 3m′−14

Next, we call the procedure described in Figure 10. One can check that the while-loop must

terminate in at most four iterations (because we start with r3m′−14
1 = 25(l−2), and in each while-

loop, it decreases by a factor of almost 2l−1). At the end, the procedure returns a coloring triple

Tw′
= (Cw′

, dw′
, rw′

) that satisfies

w′ ≤ 3m′ − 1 , dw′
≤ m′ + 1 , rw′

1 = 2l , rw′

2 = 2n and rw′

i = 2l , ∀ i : 3 ≤ i ≤ dw′
.

We note that the second coordinate is ignored in the above procedure; thus, by symmetry,

we may repeat the whole process above on the second coordinate and obtain a coloring triple

Tw′′
= (Cw′′

, dw′′
, rw′′

) that satisfies

w′′ ≤ 6m′ − 2 , dw′′
≤ 2m′ and rw′′

i = 2l , ∀ i : 1 ≤ i ≤ dw′′
.

By the definition of m′,m and the assumption that l < n,

dw′′
≤ 2m′ ≤ 2

(

n

l − 2
+ 1

)

≤ 2

(

n

l/3

)

+ 2 =
6n

l
+ 2 <

8n

l
≤ m.

Finally, by applying L2 on coloring triple Tw′′
for m − dw′′

times with parameter u = 2l, we

obtain Tw = (Cw,m, rw) with rw ∈ Zm and rw
i = 2l for all i ∈ [m]. It then follows from the

construction that w = O(m).

To see why this sequence T gives a reduction from problem Brouwerf2 to Brouwerf , let

T i = (Ci, di, ri) (again the superscripts of C, d, r denote the index of the iteration). As sequence

{Size
[

ri
]

}0≤i≤w is nondecreasing and w = O(m) = O(n), by the Property A of Lemma 9.1, 9.2

and 9.3, there exists a polynomial g(n) such that

Size [Cw] ≤ Size [C] + w · O
(

g (Size [rw])
)

= Size [C] + w · O
(

g(lm)
)

= poly(n,Size [C]).

By these Properties A again, we can construct the whole sequence T and in particular, coloring

48

www.manaraa.com

triple Tw = (Cw,m, rw), in time poly(n,Size [C]).

Pair (Cw, 08n) is an input instance of Brouwerf . Given any panchromatic simplex P of

(Cw, 08n) and using the algorithms in Properties B of Lemma 9.1, 9.2 and 9.3, we can compute

a sequence of panchromatic simplices Pw = P,Pw−1, ..., P 0 iteratively in polynomial time, where

P t is a panchromatic simplex of T t and is computed from the panchromatic simplex P t+1 of T t+1.

In the end, we obtain P 0, which is a panchromatic simplex of (C, 02n).

As a result, Brouwerf is PPAD-complete, and Theorem 6.6 is proved.

10 Extensions and Open Problems

10.1 Sparse Games are Hard

As fixed points and Nash equilibria are fundamental to many other search and optimization

problems, our results and techniques may have a broader scope of applications and implications.

So far, our complexity results on the computation and approximation of Nash equilibria have

been extended to Arrow-Debreu equilibria [36]. They can also be naturally extended to both

r-player games [55] and r-graphical games [41], for every fixed r ≥ 3. Since the announcement

of our work, it has been shown that Nash equilibria are PPAD-hard to approximate in fully

polynomial time even for bimatrix games with some special payoff structures, such as bimatrix

games in which all payoff entries are either 0 or 1 [17], or in which most of the payoff entries are

0. In the latter case, we can strengthen our gadgets to prove the following theorem:

Theorem 10.1 (Sparse Bimatrix). Nash equilibria remain PPAD-hard to approximate in

fully polynomial time for sparse bimatrix games in which each row and column of the two payoff

matrices contains at most 10 nonzero entries.

The reduction needed in proving this theorem is similar to the one used in proving Theorem

6.1. The key difference is that we first reduce Brouwerf1 to a sparse generalized circuit, where

a generalized circuit is sparse if each node is used by at most two gates as their input nodes. We

then refine our gadget games for Gζ , G∧ and G∨, to guarantee that the resulting bimatrix game

is sparse. Details of the proof can be found in [13].

10.2 Open Questions and Conjectures

There remains a complexity gap in the approximation of two-player Nash equilibria: Lipton,

Markakis and Mehta [50] show that an ε-approximate Nash equilibrium can be computed in

nO(log n/ε2)-time, while this paper shows that, for ε of order 1/poly(n), no algorithm can find an

ε-approximate Nash equilibrium in poly(n, 1/ε)-time, unless PPAD is contained in P. However,

our hardness result does not cover the case when ε is a constant between 0 and 1, or of order

1/polylog(n). Naturally, it is unlikely that finding an ε-approximate Nash equilibrium is PPAD-

complete when ε is an absolute constant, for otherwise, all search problems in PPAD would be

solvable in nO(log n)-time, due to the result of [50].

Thinking optimistically, we would like to see the following conjectures turn out to be true.

49

www.manaraa.com

Conjecture 1 (PTAS for Bimatrix). There is an O(nk+ε−c
)-time algorithm for finding an ε-

approximate Nash equilibrium in a two-player game, for some constants c and k.

Conjecture 2 (Smoothed Bimatrix). There is an algorithm for Bimatrix with smoothed com-

plexity O(nk+σ−c
) under perturbations with magnitude σ, for some constants c and k.

Recently, for sufficiently large constant ε, polynomial-time algorithms are developed for the

computation of an ε-approximate Nash equilibrium [23, 45, 24, 8, 66]. Currently, the constant

ε achieved by the best algorithm is 0.3393 (due to Tsaknakis and Spirakis [66]). However, new

techniques are needed to prove Conjecture 1 [29]. Lemma 3.2 implies that Conjecture 1 is true

for ε-well-supported Nash equilibrium if and only if it is true for ε-approximate Nash equilibrium.

Concerning bimatrix games (A,B) such that rank(A + B) is a constant, Kannan and Theobald

[39] found a fully-polynomial-time algorithm to approximate Nash equilibria. For two-player

planar win-lose games, Addario-Berry, Olver and Vetta [3] gave a polynomial-time algorithm for

computing a Nash equilibrium.

In [28], Etessami and Yannakakis studied the complexity of approximating Nash equilibria

using a different approximation concept: a strong ε-approximate Nash equilibrium is a mixed

strategy profile that is geometrically close (e.g., in ‖ · ‖∞) to an exact Nash equilibrium. They

introduced a new complexity class FIXP, and proved that the strong approximation of Nash

equilibria in three-player games is FIXP-complete. It was also shown that the linear version of

FIXP is exactly PPAD.

For Conjecture 2, one might be able to prove a weaker version of this conjecture by extending

the analysis of [5] to show that there is an algorithm for Bimatrix with smoothed complexity

nO(log n/σ2). We also conjecture that Corollary 6.4 remains true without any complexity assump-

tion on PPAD, namely, that it could be proved without assuming PPAD &⊂ RP. A positive

answer would extend the result of Savani and von Stengel [60] to smoothed bimatrix games. An-

other interesting question is whether the average-case complexity of the Lemke-Howson algorithm

is polynomial.

Of course, the fact that two-player Nash equilibria and Arrow-Debreu equilibria are PPAD-

hard to compute in the smoothed model does not necessarily imply that game and market prob-

lems are hard to solve in practice. In addition to possible noise and imprecision in inputs, practical

problems might have other special structure that makes equilibrium computation or approxima-

tion more tractable. The game and market problems and their hardness results might provide an

opportunity and a family of concrete problems for discovering new input models that can help us

rigorously evaluate the performance of practical equilibrium algorithms and heuristics.

Theorem 6.2 implies that for any r > 2, the computation of an r-player Nash equilibrium can

be reduced in polynomial time to the computation of a two-player Nash equilibrium. However,

the implied reduction is not very natural: The r-player Nash equilibrium problem is first reduced

to End-of-Line, then to Brouwer, and then to Bimatrix. It remains an interesting question

to find a more direct reduction from r-player Nash equilibria to two-player Nash equilibria.

The following complexity question about Nash equilibria is due to Vijay Vazirani: Are the

counting versions of all PPAD-complete problems as hard as the counting version of Bimatrix?

50

www.manaraa.com

Gilboa and Zemel [32] showed that deciding whether a bimatrix game has a unique Nash equi-

librium is NP-hard. Their technique was extended in [20] to prove that counting the number

of Nash equilibria is #P-hard. Because the reduction between search problems only requires a

many-to-one map between solutions, the number of solutions is not necessarily preserved. More

restricted reductions are needed to solve Vazirani’s question.

Finally, even though the results in this paper and the results of [21, 12, 25] provide strong

evidence that equilibrium computation might not be solvable in polynomial time, very little is

known about the hardness of PPAD [37]. On one hand, Megiddo [51] proved that if Bimatrix is

NP-hard, then NP = coNP. On the other hand, there are oracles that separate PPAD from P,

and various discrete fixed point problems such as the computational version of Sperner’s Lemma,

require an exponential number of functional evaluations in the query model, deterministic [34, 10]

or randomized [16], and also in the quantum query model [30, 16]. It is desirable to find stronger

evidences that PPAD is not contained in P. Does the existence of one-way functions imply that

PPAD is not contained in P? Does “Factoring is not in P” imply that PPAD is not contained

in P? Characterizing the hardness of the PPAD class is a great and challenging problem.

11 Acknowledgments

We would like to thank the three referees for their great suggestions. We would like to thank Kyle

Burke, Costis Daskalakis, Li-Sha Huang, Jon Kelner, Christos Papadimitriou, Laura Poplawski,

Rajmohan Rajaraman, Dan Spielman, Ravi Sundaram, Paul Valiant, and Vijay Vazirani for help-

ful comments and suggestions. We would like to thank everyone who asked about the smoothed

complexity of the Lemke-Howson algorithm, especially John Reif for being the first player to ask

us this question.

Xi Chen’s work was supported by the Chinese National Key Foundation Plan (2003CB31-

7807, 2004CB318108), the National Natural Science Foundation of China Grant 60553001 and

the National Basic Research Program of China Grant (2007CB807900, 2007CB807901). Part of

his work was done while visiting the City University of Hong Kong. Xiaotie Deng’s work was

supported by a grant from Research Grants Council of the Hong Kong Special Administrative

Region (Project No. CityU 112707) and by City University of Hong Kong. Shang-Hua Teng’s

work was supported by the NSF grants CCR-0311430, CCR-0635102 and ITR CCR-0325630.

Part of his work was done while visiting Tsinghua University and Microsoft Beijing Research

Lab. Several critical ideas on the approximation and smoothed complexities of two-player Nash

equilibria were shaped when the authors were attending ISAAC 2005 at Sanya, Hainan, China.

References

[1] John Reif, Nicole Immorlica, Steve Vavasis, Christos Papadimitriou, Mohammad Mahdian,

Ding-Zhu Du, Santosh Vempala, Aram Harrow, Adam Kalai, Imre Bárány, Adrian Vetta,

Jonathan Kelner and a number of other people asked whether the smoothed complexity of

the Lemke-Howson algorithm or Nash Equilibria is polynomial, 2001–2005.

51

www.manaraa.com

[2] T. Abbott, D. Kane, and P. Valiant. On the complexity of two-player win-lose games. In

FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer

Science, pages 113–122, 2005.

[3] L. Addario-Berry, N. Olver, and A. Vetta. A polynomial time algorithm for finding Nash equi-

libria in planar win-lose games. Journal of Graph Algorithms and Applications, 11(1):309–

319, 2007.

[4] K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econo-

metrica, 22:265–290, 1954.

[5] I. Bárány, S. Vempala, and A. Vetta. Nash equilibria in random games. In FOCS ’05:

Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,

pages 123–131, 2005.

[6] L. Blum, M. Shub, and S. Smale. On a theory of computation over the real numbers; NP

completeness, recursive functions and universal machines. Bulletin of the AMS, 21(1):1–46,

July 1989.

[7] K.-H. Borgwardt. The average number of steps required by the simplex method is polynomial.

Zeitschrift fur Operations Research, 26:157–177, 1982.

[8] H. Bosse, J. Byrka, and E. Markakis. New algorithms for approximate Nash equilibria in

bimatrix games. In Proceedings of the 3rd International Workshop on Internet and Network

Economics, pages 17–29, 2007.

[9] L. Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71:97–115,

1910.

[10] X. Chen and X. Deng. On algorithms for discrete and approximate Brouwer fixed points.

In STOC ’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,

pages 323–330, 2005.

[11] X. Chen and X. Deng. On the complexity of 2D discrete fixed point problem. In ICALP ’06:

Proceedings of the 33rd International Colloquium on Automata, Languages and Programming,

pages 489–500, 2006.

[12] X. Chen and X. Deng. 3-Nash is PPAD-complete. In Electronic Colloquium in Computational

Complexity, TR05-134, 2005.

[13] X. Chen, X. Deng, and S.-H. Teng. Sparse games are hard. In Proceedings of the 2nd

Workshop on Internet and Network Economics, pages 262–273, 2006.

[14] X. Chen, L.-S. Huang, and S.-H. Teng. Market equilibria with hybrid linear-Leontief utilities.

In Proceedings of the 2nd Workshop on Internet and Network Economics, pages 274–285,

2006.

52

www.manaraa.com

[15] X. Chen, X. Sun, and S.-H. Teng. Quantum separation of local search and fixed point

computation. In Proceedings of the 14th Annual International Computing and Combinatorics

Conference, pages 169–178, 2008.

[16] X. Chen and S.-H. Teng. Paths beyond local search: A tight bound for randomized fixed-

point computation. In Proceedings of the 48th Annual IEEE Symposium on Foundations of

Computer Science, pages 124–134, 2007.

[17] X. Chen, S.-H. Teng, and P. Valiant. The approximation complexity of win-lose games. In

SODA ’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 159–168, 2007.

[18] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye. Leontief economies encode nonzero sum

two-player games. In SODA ’06: Proceedings of the 17th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 659–667, 2006.

[19] A. Condon, H. Edelsbrunner, E. Emerson, L. Fortnow, S. Haber, R. Karp, D. Leivant,

R. Lipton, N. Lynch, I. Parberry, C. Papadimitriou, M. Rabin, A. Rosenberg, J. Royer,

J. Savage, A. Selman, C. Smith, E. Tardos, and J. Vitter. Challenges for theory of computing:

Report of an NSF-sponsored workshop on research in theoretical computer science. SIGACT

News, 30(2):62–76, 1999.

[20] V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), pages 765–771, 2003.

[21] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash

equilibrium. In STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of

Computing, pages 71–78, 2006.

[22] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash

equilibrium. SIAM Journal on Computing, to appear.

[23] C. Daskalakis, A. Mehta, and C. Papadimitriou. A note on approximate Nash equilibria. In

Proceedings of the 2nd Workshop on Internet and Network Economics, pages 297–306, 2006.

[24] C. Daskalakis, A. Mehta, and C. Papadimitriou. Progress in approximate Nash equilibria.

In Proceedings of the 8th ACM Conference on Electronic Commerce, pages 355–358, 2007.

[25] C. Daskalakis and C. Papadimitriou. Three-player games are hard. In Electronic Colloquium

in Computational Complexity, TR05-139, 2005.

[26] X. Deng, C. Papadimitriou, and S. Safra. On the complexity of price equilibria. Journal of

Computer and System Sciences, 67(2):311–324, 2003.

[27] H. Edelsbrunner. Geometry and Topology for Mesh Generation (Cambridge Monographs on

Applied and Computational Mathematics). Cambridge University Press, New York, USA,

2006.

53

www.manaraa.com

[28] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points.

In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,

pages 113–123, 2007.

[29] T. Feder, H. Nazerzadeh, and A. Saberi. Approximating Nash equilibria using small-support

strategies. In Proceedings of the 8th ACM Conference on Electronic Commerce, pages 352–

354, 2007.

[30] K. Friedl, G. Ivanyos, M. Santha, and F. Verhoeven. On the black-box complexity of Sperner’s

lemma. In Proceedings of the 15th International Symposium on Fundamentals of Computa-

tion Theory, pages 245–257, 2005.

[31] K. Friedl, G. Ivanyos, M. Santha, and F. Verhoeven. Locally 2-dimensional Sperner problems

complete for the polynomial parity argument classes. In Proceedings of the 6th Conference

on Algorithms and Complexity, pages 380–391, 2006.

[32] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations.

Games and Economic Behavior, 1(1):80–93, 1989.

[33] P. Goldberg and C. Papadimitriou. Reducibility among equilibrium problems. In STOC ’06:

Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 61–70,

2006.

[34] M. Hirsch, C. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding Brouwer

fixed points. Journal of Complexity, 5:379–416, 1989.

[35] C. Holt and A. Roth. The Nash equilibrium: A perspective. Proceedings of the National

Academy of Sciences of the United States of America, 101(12):3999–4002, 2004.

[36] L.-S. Huang and S.-H. Teng. On the approximation and smoothed complexity of Leontief

market equilibria. In Proceedings of the 1st International Frontiers of Algorithmics Work-

shop, pages 96–107, 2007.

[37] D. Johnson. The NP-completeness column: Finding needles in haystacks. ACM Transactions

on Algorithms, 3(2):24, 2007.

[38] S. Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal,

8:457–459, 1941.

[39] R. Kannan and T. Theobald. Games of fixed rank: A hierarchy of bimatrix games. In SODA

’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1124–1132, 2007.

[40] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4:373–395, 1984.

54

www.manaraa.com

[41] M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Proceedings of

the Conference on Uncertainty in Artificial Intelligence, pages 253–260, 2001.

[42] L. Khachian. A polynomial algorithm in linear programming. Doklady Akademia Nauk,

SSSR 244:1093–1096, English translation in Soviet Math. Dokl. 20, 191–194, 1979.

[43] V. Klee and G. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities

– III, pages 159–175. Academic Press, 1972.

[44] K. Ko. Complexity theory of real functions. Birkhauser Boston Inc., Cambridge, MA, USA,

1991.

[45] S. Kontogiannis, P. Panagopoulou, and P. Spirakis. Polynomial algorithms for approximating

Nash equilibria of bimatrix games. In Proceedings of the 2nd Workshop on Internet and

Network Economics, pages 286–296, 2006.

[46] C. Lemke. Bimatrix equilibrium points and mathematical programming. Management Sci-

ence, 11:681–689, 1965.

[47] C. Lemke and J. Howson, Jr. Equilibrium points of bimatrix games. Journal of the Society

for Industrial and Applied Mathematics, 12:413–423, 1964.

[48] R. Leonard. Reading Cournot, reading Nash: The creation and stabilisation of the Nash

equilibrium. Economic Journal, 104(424):492–511, 1994.

[49] R. Lipton and E. Markakis. Nash equilibria via polynomial equations. In Proceedings of the

6th Latin American Symposium on Theoretical Informatics, pages 413–422, 2004.

[50] R. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In

Proceedings of the 4th ACM conference on Electronic Commerce, pages 36–41, 2004.

[51] N. Megiddo. A note on the complexity of P-matrix LCP and computing an equilibrium.

Research Report RJ6439, IBM Almaden Research Center, San Jose, 1988.

[52] N. Megiddo and C. Papadimitriou. On total functions, existence theorems and computational

complexity. Theoretical Computer Science, 81:317–324, 1991.

[53] O. Morgenstern and J. von Neumann. Theory of Games and Economic Behavior. Princeton

University Press, 1947.

[54] J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of the

USA, 36(1):48–49, 1950.

[55] J. Nash. Noncooperative games. Annals of Mathematics, 54:289–295, 1951.

[56] C. Papadimitriou. On inefficient proofs of existence and complexity classes. In Proceedings

of the 4th Czechoslovakian Symposium on Combinatorics, 1991.

55

www.manaraa.com

[57] C. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of

existence. Journal of Computer and System Sciences, pages 498–532, 1994.

[58] C. Papadimitriou. Algorithms, games, and the internet. In STOC ’01: Proceedings of the

33rd Annual ACM Symposium on Theory of Computing, pages 749–753, 2001.

[59] T. Sandholm. Issues in computational Vickrey auctions. International Journal of Electronic

Commerce, 4(3):107–129, 2000.

[60] R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium

in a bimatrix game. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on

Foundations of Computer Science, pages 258–267, 2004.

[61] H. Scarf. The approximation of fixed points of a continuous mapping. SIAM Journal on

Applied Mathematics, 15:997–1007, 1967.

[62] H. Scarf. On the computation of equilibrium prices. In W. Fellner, editor, Ten Economic

Studies in the Tradition of Irving Fisher. New York: John Wiley & Sons, 1967.

[63] E. Sperner. Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes. Abhand-

lungen aus dem Mathematischen Seminar Universitat Hamburg, 6:265–272, 1928.

[64] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm

usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

[65] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms and heuristics: Progress and

open questions. In L. Pardo, A. Pinkus, E. Süli, and M. Todd, editors, Foundations of

Computational Mathematics, pages 274–342. Cambridge University Press, 2006.

[66] H. Tsaknakis and P. Spirakis. An optimization approach for approximate Nash equilibria. In

Proceedings of the 3rd International Workshop on Internet and Network Economics, pages

42–56, 2007.

[67] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320,

1928.

[68] R. Wilson. Computing equilibria of n-person games. SIAM Journal on Applied Mathematics,

21:80–87, 1971.

[69] Y. Ye. Exchange market equilibria with Leontief’s utility: Freedom of pricing leads to

rationality. In Proceedings of the 1st Workshop on Internet and Network Economics, pages

14–23, 2005.

56

www.manaraa.com

A Perturbation and Probabilistic Approximation

In this section, we prove Lemma 4.2. To help explain the probabilistic reduction from the ap-

proximation of bimatrix games to the solution of perturbed bimatrix games, we first define the

notion of many-way polynomial reductions among TFNP problems.

Definition A.1 (Many-way Reduction). Let F be a set of polynomial-time functions and g

be a polynomial-time function. A search problem SearchR1 ∈ TFNP is (F , g)-reducible to

SearchR2 ∈ TFNP if, for all y ∈ {0, 1}∗, (f(x), y) ∈ R2 implies (x, g(y)) ∈ R1 for every input

x of R1 and for every function f ∈ F .

Proof. (of Lemma 4.2) We will only give a proof of the lemma under uniform perturbations.

With a slightly more complex argument to handle the low probability case when the absolute value

of the perturbation is large, we can similarly prove the lemma under Gaussian perturbations.

Suppose J is an algorithm with polynomial smoothed complexity for Bimatrix. Let TJ(A,B)

be the time complexity of J for solving the bimatrix game defined by (A,B). Let Nσ() denote

the uniform perturbation with magnitude σ. Then there exists constants c, k1 and k2 such that

for all 0 < σ < 1,

max
Ā,B̄∈R

n×n
[0,1] ,

EA←Nσ(Ā),B←Nσ(B̄) [TJ(A,B)] ≤ c · nk1σ−k2.

For each pair of perturbation matrices S,T ∈ R
n×n
[−σ,σ], we can define a function f(S,T) from

Rn×n × Rn×n to Rn×n × Rn×n as f(S,T)((Ā, B̄)) = (Ā + S, B̄ + T). Let Fσ be the set of all such

functions, i.e.,

Fσ =
{

f(S,T)

∣

∣ S,T ∈ R
n×n
[−σ,σ]

}

.

Let g be the identity function from Rn × Rn to Rn × Rn.

We now show that the problem of computing an ε-approximate Nash equilibrium is (Fε/2, g)-

reducible to the problem of finding a Nash equilibrium of perturbed instances. More specifically,

we prove that for every bimatrix game (Ā, B̄) and for every f(S,T) ∈ Fε/2, a Nash equilibrium

(x,y) of f(S,T)((Ā, B̄)) is an ε-approximate Nash equilibrium of (Ā, B̄).

Let A = Ā + S and B = B̄ + T. Then,

|xTAy − xT Āy| = |xT Sy| ≤ ε/2 (21)

|xT By − xT B̄y| = |xT Ty| ≤ ε/2. (22)

Thus, for each Nash equilibrium (x,y) of (A,B), for any (x′,y′),

(x′)T Āy − xT Āy ≤
(

(x′)T Ay − xT Ay
)

+ ε ≤ ε.

Similarly, xT B̄y′ −xT B̄y ≤ ε. Therefore, (x,y) is an ε-approximate Nash equilibrium of (Ā, B̄).

Now given the algorithm J with polynomial smoothed time-complexity for Bimatrix, we can

apply the following randomized algorithm to find an ε-approximate Nash equilibrium of (Ā, B̄):

57

www.manaraa.com

Algorithm NashApproximationByPerturbations (Ā, B̄)

1. Randomly choose a pair of perturbation matrices S,T of magnitude ε/2 and set

A = Ā + S and B = B̄ + T.

2. Apply algorithm J to find a Nash equilibrium (x,y) of (A,B).

3. Return (x,y).

The expected time complexity of the algorithm is bounded from above by the smoothed comp-

lexity of J , and hence is at most 2k2c · nk1ε−k2, which is polynomial in n and 1/ε.

B Padding Generalized Circuits: Proof of Theorem 5.7

Suppose S = (V,T) is a generalized circuit. Let K = |V |. First, S has a 1/K3-approximate solu-

tion because Poly3-Gcircuit is reducible to Poly12-Bimatrix (see Lemma 6.8 and Section 7),

and every two-player game has a Nash equilibrium. Thus, the theorem is true for c = 3.

For the case when c > 3, we reduce problem Polyc-Gcircuit to Poly3-Gcircuit. Suppose

c = 2b + 1, where b > 1. We build a new circuit S ′ = (V ′,T ′) by inserting some dummy nodes

into S as follows:

• V ⊂ V ′, |V ′ | = Kb > K and |T ′ | = |T | ;

• For each gate T = (G, v1, v2, v,α) ∈ T , if G /∈ {Gζ , G×ζ} (and thus, α = nil), then T ∈ T ′;

otherwise, gate (G, v1, v2, v,K1−bα) ∈ T ′.

Let x′ be a 1/|V ′ |3-approximate solution of S ′ (note that |V ′|3 = 1/K3b). We now construct an

assignment x : V → R by setting x[v] = Kb−1x′[v] for every v ∈ V . One can easily check that x

is a 1/K2b+1-approximate solution to the original circuit S. We then apply 1/K2b+1 = 1/Kc.

C Padding Bimatrix Games: Proof of Lemma 6.9

Let c be the constant such that Polyc-Bimatrix is known to be PPAD-complete. If c < 2, then

finding an n−2-approximate Nash equilibrium is harder, and thus is also complete in PPAD.

With this, without loss of generality, we assume that c ≥ 2. To prove the lemma, we only need

to show that for every constant c′ such that 0 < c′ < c, Polyc-Bimatrix is polynomial-time

reducible to Polyc′-Bimatrix.

Suppose G = (A,B) is an n×n positively normalized two-player game. We transform it into

a new n × n game G′ = (A′,B′) as follows:

a′i,j = ai,j +
(

1 − max
1≤k≤n

ak,j

)

and b′i,j = bi,j +
(

1 − max
1≤k≤n

bi,k

)

, ∀ i, j : 1 ≤ i, j ≤ n.

One can verify that any ε-approximate Nash equilibrium of G′ is also an ε-approximate Nash

equilibrium of G. Besides, every column of A′ and every row of B′ has at least one entry with

value 1.

58

www.manaraa.com

Next, we construct an n′′ × n′′ game G′′ = (A′′,B′′) where n′′ = n
2c
c′ > n as follows: A′′

and B′′ are both 2 × 2 block matrices with A′′
1,1 = A′, B′′

1,1 = B′, A′′
1,2 = B′′

2,1 = 1 and

A′′
2,1 = A′′

2,2 = B′′
1,2 = B′′

2,2 = 0. Now let (x′′,y′′) be any 1/n′′c′ = 1/n2c-approximate Nash

equilibrium of game G′′ = (A′′,B′′). By the definition of ε-approximate Nash equilibria, one

can show that 0 ≤
∑

n<i≤n′′ x′′
i ,

∑

n<i≤n′′ y′′i ≤ n1−2c 7 1/2, since we assumed that c ≥ 2. Let

a =
∑

1≤i≤n x′′
i and b =

∑

1≤i≤n y′′i . We construct a pair of mixed strategies (x′,y′) of G′ as

follows: x′
i = x′′

i /a and y′i = y′′i /b for all i ∈ [n]. Since a, b > 1/2, one can show that (x′,y′) is a

4/n2c-approximate Nash equilibrium of G′, which is also a 1/nc-approximate Nash equilibrium of

the original game G.

D Gadget Games: Completing the Proof of Lemma 7.4

Proof for Gζ Gates. From Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v] − α, and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

=
(

yC [v] − y[v]
)

− y[v].

If x[v] > α + ε, then from the first equation, we have y[v] = yC [v]. But the second equation

implies x[v] = 0, which contradicts our assumption that x[v] > 0.

If x[v] < α − ε, then from the first equation, we have y[v] = 0. But the second equation

implies that x[v] = xC [v] ≥ 1/K − ε, which contradicts the assumption that x[v] < α − ε and

α ≤ 1/K.

Proof for G×ζ Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= αx[v1] − x[v], and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

= y[v] −
(

yC [v] − y[v]
)

.

If x[v] > min(αx[v1], 1/K) + ε, then x[v] > αx[v1] + ε, since x[v] ≤ xC [v] ≤ 1/K + ε. By the

first equation, we have y[v] = 0 and the second one implies that x[v] = 0, which contradicts the

assumption that x[v] > min(αx[v1], 1/K) + ε > 0.

If x[v] < min(αx[v1], 1/K) − ε ≤ αx[v1] − ε, then the first equation shows y[v] = yC [v] and

thus by the second equation, we have x[v] = xC [v] ≥ 1/K − ε, which contradicts the assumption

that x[v] < min(αx[v1], 1/K) − ε ≤ 1/K − ε.

Proof for G= Gates. G= is a special case of G×ζ , with parameter α = 1.

Proof for G− Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] − x[v2] − x[v], and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

= y[v] −
(

yC [v] − y[v]
)

.

59

www.manaraa.com

If x[v] > max(x[v1]−x[v2], 0)+ ε ≥ x[v1]−x[v2]+ ε, then the first equation implies y[v] = 0. By

the second equation, we have x[v] = 0 which contradicts the assumption that x[v] > max(x[v1]−

x[v2], 0) + ε > 0.

If x[v] < min(x[v1] − x[v2], 1/K) − ε ≤ x[v1] − x[v2] − ε, then by the first equation, we have

y[v] = yC [v]. By the second equation, we have x[v] = xC [v] ≥ 1/K − ε, contradicting the

assumption that x[v] < min(x[v1] − x[v2], 1/K) − ε ≤ 1/K − ε.

Proof for G< Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] − x[v2], and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

=
(

yC [v] − y[v]
)

− y[v].

If x[v1] < x[v2] − ε, then y[v] = 0 according to the first equation. By the second equation, we

have x[v] = xC [v] = 1/K ± ε and thus, x[v] = ε
B 1.

If x[v1] > x[v2] + ε, then y[v] = yC [v] according to the first equation. By the second one, we

have x[v] = 0 and thus, x[v] = ε
B 0.

Proof for G∨ Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] + x[v2] − 1/(2K), and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

= y[v] −
(

yC [v] − y[v]
)

.

If x[v1] = ε
B 1 or x[v2] = ε

B 1, then x[v1] + x[v2] ≥ 1/K − ε. By the first equation y[v] = yC [v]. By

the second equation, we have x[v] = xC [v] = 1/K ± ε and thus, x[v] = ε
B 1.

If x[v1] = ε
B 0 and x[v2] = ε

B 0, then x[v1]+x[v2] ≤ 2ε. From the first equation, y[v] = 0. Then,

the second equation implies x[v] = ε
B 0.

Proof for G∧ Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] + x[v2] − 3/(2K), and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

= y[v] −
(

yC [v] − y[v]
)

.

If x[v1] = ε
B 0 or x[v2] = ε

B 0, then x[v1] + x[v2] ≤ 1/K + 2ε. From the first equation, we have

y[v] = 0. By the second equation, we have x[v] = 0 and thus, x[v] = ε
B 0.

If x[v1] = ε
B 1 and x[v2] = ε

B 1, then x[v1] + x[v2] ≥ 2/K − 2ε. The first equation shows

y[v] = yC [v]. By the second equation, x[v] = xC [v] = 1/K ± ε and thus, x[v] = ε
B 1.

Proof for G¬ Gates. From (3), (4) and Figure 3, we have

〈

x|bS
2k−1

〉

−
〈

x|bS
2k

〉

= x[v1] −
(

xC [v1] − x[v1]
)

, and
〈

aS
2k−1|y

〉

−
〈

aS
2k|y

〉

=
(

yC [v] − y[v]
)

− y[v].

60

www.manaraa.com

If x[v1] = ε
B 1, then by the first equation, y[v] = yC [v]. Then, by the second equation, we have

x[v] = 0.

If x[v1] = ε
B 0, then the first equation shows that y[v] = 0. By the second equation, we have

x[v] = xC [v] and thus, x[v] = ε
B 1.

61

